【C++杂货铺】内存管理

news2024/10/2 6:27:45

在这里插入图片描述

文章目录

  • 一、C/C++内存分布
  • 二、C++内存管理方式
    • 2.1 new和delete操作内置类型
    • 2.2 new和delete操作自定义类型
  • 三、operator new与operator delete函数
  • 四、new和delete的实现原理
    • 4.1 内置类型
    • 4.2 自定义类型
  • 五、定位new表达式(placement-new)
  • 六、malloc/free和new/delete的区别总结
  • 七、内存泄漏

一、C/C++内存分布

从用途和存储的角度来看,在C/C++程序中有局部数据、静态数据、全局数据、常量数据、动态申请的数据五种主要的数据,各种数据的特点如下:

  • 局部数据:随用随创建,存储在栈区,作用域只在局部,生命周期在局部,出了作用域就销毁。
  • 静态数据:存储在数据段,作用域只在局部或当前文件,生命周期伴随程序“一生”。
  • 全局数据:存储在数据段,作用域在全局,生命周期伴随程序“一生”。
  • 常量数据:存储在代码段。
  • 动态申请的数据:存储在堆区。

在这里插入图片描述
小Tips:这里需要注意char char2[] = "abcd";"abcd"是常量字符串,存储在代码段,但是char2只是一个局部域的数组,它会把这个常量字符串拷贝一份,存储在栈区,然后char2是数组名,表示数组首元素的地址,这里表示的就是拷贝过来存储在栈区的字符串的首元素地址,并不是表示代码段中常量字符串的首元素地址。其次,const并不会改变变量的存储区域,因为pChar3是一个局部变量,所以它还是存储在栈区,前面加const修饰,是因为它存的是代码段中常量字符串的首地址。可见只要是在局部创建的变量,只要前面没有加static修饰,那这个变量一定是存储在栈区。

📖总结:

  • :又叫堆栈,用于存放非静态局部变量、函数参数、返回值等等,栈是向下生长的。
  • 内存映射段:是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享内存,做进程间通信。
  • :用于程序运行时动态内存分配,堆是向上增长的。
  • 数据段:用于存储全局数据和静态数据。
  • 代码段:用于存储可执行的代码/只读的常量。

小Tips:数据段也可以叫做静态区,代码段也可以叫做常量区。其中数据段和代码段是站在操作系统的角度进行划分的,而静态区和常量区是站在语言的角度进行划分的。

二、C++内存管理方式

在学习C语言时,提到的4个内存管理函数mallocrealloccallocfree大家还记得嘛👀?忘了的话可以走传送门,回去看看。在C++中我们任然可以使用C语言中的内存管理方式,但有些地方就无能为力了,而且使用起来比较麻烦,因此C++中提出了自己的内存管理方式:通过newdelete操作符进行动态内存管理

2.1 new和delete操作内置类型

void Test()
{
  // 动态申请一个int类型的空间
  int* ptr4 = new int;
  
  // 动态申请一个int类型的空间并初始化为10
  int* ptr5 = new int(10);
  
  // 动态申请10个int类型的空间,不初始化
  int* ptr6 = new int[10];
  // 动态申请10个int类型的空间,并初始化前三个
  int* ptr7 = new int[10]{1,2,3};
  delete ptr4;
  delete ptr5;
  delete[] ptr6;
  delete[] ptr7;
}

小Tipsnew对内置类型来说,和C语言一样,只是纯粹的开空间,对于动态申请到的空间,如果不进行人为初始化的话,里面存的都是随机值。动态申请并初始化,类型后面跟的是圆括号(),动态申请多个连续空间,类型后面跟的是方括号[],如果要对这多个连续的空间初始化,可以在[]的后面跟{},里面是初始化的数据,可以只初始化一部分,后面默认补0。申请和释放单个元素的空间,使用newdelete操作符,申请和释放连续的空间使用new[]delete[]

2.2 new和delete操作自定义类型

📖C语言的玩法
先来回顾一下,C语言中针对自定义类型是怎么玩的,以动态申请一个链表节点为例:

//节点类型
struct List_Node
{
	int _val;
	struct List_Node* _next;
};
//申请节点的函数
List_Node* BuyListNode(int x)
{
	List_Node* tmp = (List_Node*)malloc(sizeof(List_Node));
	if (nullptr == tmp)
	{
		perror("malloc");
		exit(-1);
	}

	tmp->_val = x;
	tmp->_next = nullptr;
}
int main()
{
	//动态申请三个节点
	List_Node* p1 = BuyListNode(1);
	List_Node* p2 = BuyListNode(2);
	List_Node* p3 = BuyListNode(3);
	return 0;
}

如上面的代码所示,在C语言中,要想为自定义类型动态申请一块空间,我们单独封装了一个函数BuyListNode,这个函数完成了空间申请、合理性检查、初始化等工作,然后通过调用这个函数实现自定义类型的动态内存申请。

📖C++的玩法

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};
int main()
{
	//通过new动态申请一块空间,存储A类型变量
	A* p2 = new A(1);
	delete p2;
	//通过new动态申请3个连续空间,存储3个A类型的数据
	A* p6 = new A[3];
	delete[] p6;
	return 0;
}

在这里插入图片描述
通过打印结果可以看出,new/delete对于自定义类型出了开空间,还会调用构造函数和析构函数。

小Tips:上面代码中A* p2 = new A(1);,我们进行了人为的初始化,即用圆括号传了一个1,由于new会去调用构造函数,所以这个1最终会被A类构造函数的形参接受,用于初始化对象中的_a成员变量;而A* p6 = new A[3];申请的3个连续空间(数组),我们并没有进行人为的初始化,这在当前环境下也是可以的,因为构造函数的形参有缺省值,属于默认构造函数,new去调用构造函数的时候,可以不需要传实参直接使用缺省值,但是如果A类没有默认构造函数,那我们在使用new动态申请空间的时候,一定要进行人为的传值初始化。

在这里插入图片描述
如果A类没有默认构造函数,我们在new的时候就需要人为的传参进行初始化,像下面这样。

//通过new动态申请一块空间,存储A类型变量
A* p2 = new A(1);
//通过new动态申请10个连续空间,存储10个A类型的数据
A* p6 = new A[3]{ 1, 2, 3 };//通过隐式类型转换去初始化
A* p6 = new A[3]{ A(1), A(2), A(3) };//通过匿名对象去初始化
//A* p6 = new A[3]{ A(1), A(2)};//申请了三块空间,只初始化了两个,这是不被允许的

小Tips:对于动态申请的自定义类型数组,如果该自定义类型没有默认构造,则需要进行人为的初始化,并且申请了几块空间就要初始化几个,不像动态申请的内置类型数组,可以只初始化前面一部分,后面默认是0。此外,如果该类的构造函数有多个形参(超过一个),就不支持隐式类型转换去初始化了,可以继续使用匿名对象去初始化。

📖一些建议
这里建议大家maloocfreenewdeletenew[]delete[]不要混用,严格按照下面的对应关系去使用:

  • malloc——free
  • new——delete
  • new[]——delete[]

对于内置类型,混用了可能没什么,但是对于自定义类型可就不一定了。

在这里插入图片描述

三、operator new与operator delete函数

newdelete是用户进行动态内存申请和释放的操作符operator newoperator delete是系统提供的全局函数new在底层调用operator new全局函数来申请空间,delete在底层通过调用operator delete全局函数来释放空间。

小Tipsoperator newoperator delete并不是简单的运算符重载哦。

void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
// try to allocate size bytes
void *p;
while ((p = malloc(size)) == 0)
     if (_callnewh(size) == 0)
     {
         // report no memory
         // 如果申请内存失败了,这里会抛出bad_alloc 类型异常
         static const std::bad_alloc nomem;
         _RAISE(nomem);
     }
return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void *pUserData)
{
     _CrtMemBlockHeader * pHead;
     RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
     if (pUserData == NULL)
         return;
     _mlock(_HEAP_LOCK);  /* block other threads */
     __TRY
         /* get a pointer to memory block header */
         pHead = pHdr(pUserData);
          /* verify block type */
         _ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
         _free_dbg( pUserData, pHead->nBlockUse );
     __FINALLY
         _munlock(_HEAP_LOCK);  /* release other threads */
     __END_TRY_FINALLY
     return;
}
/*
free的实现
*/
#define   free(p)               _free_dbg(p, _NORMAL_BLOCK)

上面就是operator newoperator delete的实现,从中我们可以发现,operator new实际上也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete最终是通过free来释放空间的。

小Tipsoperator newoperator deletemallocfree在功能上相似,都是到堆上申请空间,然后释放空间,它们的区别在于,前者失败了会抛异常,而后者失败了是返回错误码,通过返回值来表示这一块有问题。抛异常是面向对象语言的一大特色,关于异常春人会在后面的文章中给大家分享,感兴趣的友友可以关注一下春人哟。

四、new和delete的实现原理

4.1 内置类型

如果申请的是内置类型的空间,newmallocdeletefree出了用法上面,其他方面没什么区别,new在申请空间失败时会抛异常,malloc在申请空间失败时会返回NULL

4.2 自定义类型

📖new的原理

  1. 调用operator new函数申请空间。
  2. 在申请的空间上执行构造函数,完成对象的构造。

在这里插入图片描述

📖delete的原理
3. 在空间上执行析构函数,完成对象中资源的清理工作。
4. 调用operator delete函数释放对象的空间。

在这里插入图片描述

📖new T[N]的原理
5. 调用operator new[]函数,在operator new[]函数中实际调用operator new函数完成对N个对象空间的申请。
6. 在申请的空间上执行N次构造函数。

📖delete[ ]的原理

  1. 在申请的对象空间上执行N次析构函数,完成对N个对象中资源的清理。
  2. 调用operator delete[]函数释放空间,实际在operator delete[]函数中调用operator delete来释放空间。

📖new和delete的优势

typedef int DataType;
class Stack
{
public:
	Stack(size_t capacity = 3)
	{
		_array = (DataType*)malloc(sizeof(DataType) * capacity);
		if (NULL == _array)
		{
			perror("malloc申请空间失败!!!");
			return;
		}
		_capacity = capacity;
		_size = 0;
	}
	void Push(DataType data)
	{
		// CheckCapacity();
		_array[_size] = data;
		_size++;
	}
	// 其他方法...
	~Stack()//析构函数
	{
		if (_array)
		{
			free(_array);
			_array = NULL;
			_capacity = 0;
			_size = 0;
		}
	}
private:
	DataType* _array;
	int _capacity;
	int _size;
};
void Test()
{
	Stack* ps = (Stack*)malloc(sizeof(Stack));
} 

以栈类为例,动态申请一块栈空间,在内存中的存储结构如下图所示:

在这里插入图片描述

梳理一下,首先无论是malloc还是new都会在堆区申请一块空间来存储栈对象,如上图绿色区域所示,其中malloc会直接申请,而new则是通过调用operator new进行申请。申请成功后会返回这块空间的地址,ps存的就是这个地址。其次,Stack对象中的成员变量_array还需要再动态申请一块空间,如上图粉色区域所示,申请成功后会返回这块空间的地址,_array存的就是这个地址。

粉色区域是通过构造函数申请得到的,通过析构函数进行释放的。因为malloc只负责开空间,不会去调用构造函数,因此动态申请到的空间就无法走构造函数进行初始化,可以写一个成员函数Init来完成初始化工作,其次free(ps)只会把绿色那块空间释放了,它不会去调用析构函数释放粉色空间,因此执行完free(ps)后,就会造成内存泄漏(粉色空间没释放,并且之后都找不到这块地址,不能再释放),当然可以自己在类里面写一个Destory函数,在free(ps)前先调用Destory函数释放粉色空间。总之,如果使用mallocfree坑就特别多。

相比之下,这里使用newdelete来申请和释放空间,就会方便很多,new在申请完空间后,会自动调用构造函数,完成初始化工作,delete在释放空间前也会主动调用析构函数,先释放对象中的资源。

五、定位new表达式(placement-new)

📖概念
定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象

📖使用格式

  • new(place_address)type
  • new(place_address)type(initializer-list)

其中place_address必须是一个指针,initializer-list是类型的初始化列表。

📖使用场景
定位new表达式在实际中一般是配合内存池使用。因为内存池分配的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定位表达式进行显式调构造函数进行初始化。

int main()
{
	A* p1 = (A*)malloc(sizeof(A));
	//显式调用构造函数
	new(p1)A(10);//定位new表达式
	//显式调用析构函数 
	p1->~A();
	free(p1);
	p1 = nullptr;
	return 0;
}

定位new表达式就可以解决上面提到的malloc不会调用构造函数初始化的问题。

六、malloc/free和new/delete的区别总结

📖共同点
都是从堆上申请空间,并且需要用户手动释放。

📖不同点

  • mallocfree是函数,newdelete是操作符。
  • malloc申请的空间不会初始化,new可以初始化。
  • malloc申请空间时,需要手动计算空间大小并传递,new只需要在其后面跟上空间的类型即可,如果是多个对象,[]中指定对象个数即可。
  • malloc的返回值为void*,在使用时必须强转,new不需要,因为new后面跟的是空间的类型。
  • mallo申请空间失败时,返回NULL,因此使用时必须判空,new不需要,但是new需要捕获异常。
  • 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理。

七、内存泄漏

📖什么是内存泄漏?
内存泄漏是指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上消失,而是应用程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因而造成了内存的浪费。

📖内存泄漏的危害
长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务器等等,出现内存泄漏会导致响应越来越慢,最终卡死。

📖内存泄漏的分类
C/C++程序中我们一般比较关心下面两种内存泄漏:

  • 堆内存泄漏(Heap leak)

堆内存指的是程序执行中依据需要通过malloccallocreallocnew等从堆中分配的内存,用完后必须通过调用相应的free或者delete释放。假设程序的设计错误导致这部分内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。

  • 系统资源泄漏

指程序使用系统份配的资源,比如套接字、文件描述符、管道等没有使用对应的函数释放掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。

📖如何检测内存泄漏
在vs下,可以使用Windows操作系统提供的_CrtDumpMemoryLeaks()函数进行简单的检测,该函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息。

int main()
{
	int* p = new int[10];
	// 将该函数放在main函数之后,每次程序退出的时候就会检测是否存在内存泄漏
	_CrtDumpMemoryLeaks();
	return 0;
}

在这里插入图片描述
因此大家在写代码时一定要小心,尤其是动态内存操作时,一定要记得释放。但是有些情况下总是会防不胜防,简单的可以采用上述方法快速定位。如果工程比较大,内存泄漏位置比较多,不太好查时一般都是借助第三方内存泄漏检测工具处理的。

  • 在Linux下内存泄漏检测:Linux下几款内存泄漏检测工具
  • 在Windows下使用第三方工具:VLD工具说明
  • 其他工具:内存泄漏工具比较

📖如何避免内存泄漏

  • 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这是理想状态,但是如果碰上异常时,就算注意释放了,还是可能会出现问题。需要下面提到的智能指针来管理才有保证。
  • 采用RAII思想或者智能智能指针来管理资源。
  • 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
  • 出问题了使用内存泄漏检测工具检测。ps:很多工具都不够靠谱,或者收费昂贵。

总结:内存泄漏非常常见,解决方案主要分为以下两种:

  1. 事前预防性型,如智能指针等。
  2. 事后查错型,如泄漏检测工具。

🎁结语:
 今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连支持一下,您的支持就是春人前进的动力!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/788203.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二十三种设计模式第十八篇--责任链模式

责任链模式是一种行为型设计模式&#xff0c;它允许你将请求沿着处理者链传递&#xff0c;直到有一个处理者能够处理该请求为止。责任链模式将请求发送者和请求处理者解耦&#xff0c;从而使得多个处理者都有机会处理同一个请求。 该模式包含以下几个关键角色&#xff1a; 抽象…

CUDA之指针篇

CUDA教程 第一章 指针篇 第二章 cuda原理篇 第三章 随着人工智能的发展与人才的内卷&#xff0c;很多企业已将深度学习算法的C部署能力作为基本技能之一。面对诸多arm相关且资源有限的设备&#xff0c;往往想更好的提速&#xff0c;满足更高时效性&#xff0c;必将更多类似矩…

【高危】Spring Security鉴权规则错误配置风险

漏洞描述 Spring Security 是一套为基于Spring的应用程序提供说明性安全保护的安全框架。 在 Spring Security 受影响的版本中&#xff0c;由于 Spring Security 的授权规则会应用于整个应用程序上下文&#xff0c;当应用程序中包含多个servlet&#xff0c;并且其中一个为Dis…

测试必备工具之抓包神器 Charles 如何抓取 https 数据包?

前言 之前我们发过一篇文章讲解了Charles抓包工具的基本使用&#xff0c;有需要的小伙伴可以去看上一篇文章。 之前文章讲的数据包主要是http协议&#xff0c;大家可以看到数据包并直接显示具体详细的内容&#xff1a; 但是如果抓到的是https的报文&#xff0c;是没有办法直…

Redis DeskTop Manager 使用教程

简单粗暴的介绍一下&#xff0c;以及在工作中如何去使用工具管理我们的Redis&#xff0c;更加详细及深入的使用方法欢迎大家评论区讨论&#xff0c;我也和大家一起学习。 简介&#xff1a; Redis Desktop Manager (RDM) 是一个开源的图形化 Redis 数据库管理工具&#xff0c;…

erp什么意思,erp系统软件到底是干嘛用的?

企业资源计划 (ERP) 的定义 企业资源计划 (ERP) 是指组织用于管理日常业务活动的一套软件&#xff0c;这些活动包括会计、采购、项目管理、风险管理和合规性、供应链运营等等。完整的 ERP 套件还包括企业绩效管理软件&#xff0c;用于帮助企业针对财务结果制定计划和编制预算…

react-native项目安卓版本升级 compileSdkVersion 29->31

因为 react-native-ble-manager添加过程及碰到的问题 依赖 https://github.com/innoveit/react-native-ble-manager 参考&#xff1a;https://blog.csdn.net/withings/article/details/71378562 iOS 按react-native-ble-manager 文档在 【Info.plist】加了key之后能正常使用…

Vue学习Day1——小案例快速入门Vue指令

一、Vue简介 概念&#xff1a;是一套 构建用户界面 的 渐进式 框架 Vue2官网&#xff1a;https://v2.cn.vuejs.org/ 1、什么是渐进式 所谓渐进式就是循序渐进&#xff0c;不一定非得把Vue中的所有API都学完才能开发Vue&#xff0c;可以学一点开发一点 Vue的两种开发方式&…

【图像分割】基于蜣螂优化算法DBO的Otsu(大津法)多阈值电表数字图像分割 电表数字识别【Matlab代码#51】

文章目录 【可更换其他算法&#xff0c;获取资源请见文章第5节&#xff1a;资源获取】1. 原始蜣螂优化算法1.1 滚球行为1.2 跳舞行为1.3 繁殖行为1.4 偷窃行为 2. 多阈值Otsu原理3. 部分代码展示4. 仿真结果展示5. 资源获取说明 【可更换其他算法&#xff0c;获取资源请见文章第…

UDS之27服务

SecurityAccess&#xff08;0x27&#xff09;—— 安全访问 这个服务的目的是为那些限制访问&#xff0c;以及和排放、安全相关的一些服务和数据提供一些访问权限来保护数据。 此服务执行步骤如下&#xff1a; &#xff08;1&#xff09;Client请求一个种子&#xff08;Seed…

一.安装k8s环境

1.初始操作 默认3台服务器都执行 # 关闭防火墙 systemctl stop firewalld systemctl disable firewalld# 关闭selinux sed -i s/enforcing/disabled/ /etc/selinux/config # 永久 setenforce 0 # 临时# 关闭swap swapoff -a # 临时 sed -ri s/.*swap.*/#&/ /etc/fstab…

国标GB28181视频监控平台EasyGBS无法播放,抓包返回ICMP的排查过程

国标GB28181视频平台EasyGBS是基于国标GB/T28181协议的行业内安防视频流媒体能力平台&#xff0c;可实现的视频功能包括&#xff1a;实时监控直播、录像、检索与回看、语音对讲、云存储、告警、平台级联等功能。国标GB28181视频监控平台部署简单、可拓展性强&#xff0c;支持将…

【Docker】基本概念和底层技术

Docker 1 什么是 Docker Docker 是一种容器技术。只要开发者将其应用和依赖包进行打包&#xff0c;放入到一个轻量级的、可移植的容器中&#xff0c;就能发布到任何流行的 linux 机器上。 Docker 的要素&#xff1a; image 镜像&#xff1a;静态的container 容器&#xff1a…

多线程-synchronized

文章目录 synchronized同步方法synchronized同步静态方法synchronized同步代码块 Java的多线程允许同时做多件事情。但是&#xff0c;两个及两个以上的线 程彼此互相影响的问题也就出现了。如果不防范这种冲突&#xff0c;就可能发 生两个用户购买了同一个座位的火车票&#xf…

【Nodejs】nodejs内置模块(中)

1.路劲处理模块 path 1.1 模块概览 在nodejs中&#xff0c;path是个使用频率很高&#xff0c;但却让人又爱又恨的模块。部分因为文档说的不够清晰&#xff0c;部分因为接口的平台差异性。将path的接口按照用途归类&#xff0c;仔细琢磨琢磨&#xff0c;也就没那么费解了。 1.…

【Ruoyi】静态资源映射

这里写自定义目录标题 帮助链接核心代码分析 帮助链接 SpringBoot–WebMvcConfigurer详解Ruoyi自定义资源映射 核心代码 /*** 通用配置* * author wiserice*/ Configuration public class ResourcesConfig implements WebMvcConfigurer {Autowiredprivate RepeatSubmitInter…

【代码随想录day19】路径总和

题目 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径&#xff0c;这条路径上所有节点值相加等于目标和 targetSum 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 叶子节点 是指没有…

ip校园广播音柱特点

ip校园广播音柱特点IP校园广播音柱是一种基于IP网络技术的音频播放设备&#xff0c;广泛应用于校园、商业区、公共场所等地方。它可以通过网络将音频信号传输到不同的音柱设备&#xff0c;实现远程控制和集中管理。IP校园广播音柱具备以下特点和功能&#xff1a;1. 网络传输&am…

解决嵌入式中QTableWidget双击出现空白QTableWidgetItem输入

目录 所说BUG现象解决方式1方式2全部内容 效果 今天突然想起在上个公司解决的一个BUG 嵌入式中QTableWidget一般只能看数据不能编辑&#xff0c;或者是选择 所以双击出现空白QTableWidgetItem是不允许的 所说BUG现象 解决 在空白的单元格中&#xff0c;添加不可编辑的QTableWid…

工业物联网网关让PLC数据手机端监控和报警更加简单

在传统的工厂管理中&#xff0c;我们想要看到现场设备的实时数据&#xff0c;必须在控制室内通过工控机、电脑、触摸屏等这些上位机设备才能看到&#xff0c;同理PLC维护也需要工程师在现场进行编程调试工作&#xff0c;非常不方便。 随着工业物联网的发展&#xff0c;作为设备…