踩坑 视觉SLAM 十四讲第二版 ch8 编译及运行问题

news2024/12/27 14:55:58

1.fmt相关

CMakeLists.txt中:在后面加上 fmt

target_link_libraries(optical_flow ${OpenCV_LIBS} fmt ) 

target_link_libraries(direct_method ${OpenCV_LIBS} ${Pangolin_LIBRARIES} fmt )

2.不存在用户定义的从 "std::_Bind<void (OpticalFlowTracker::*(OpticalFlowTracker *, std::_Placeholder<1>))(const cv::Range &range)>" 到 "const cv::ParallelLoopBody" 的适当转换:

error: invalid initialization of reference of type ‘const cv::ParallelLoopBody&’ from expression of type ‘std::_Bind_helper<false, void (OpticalFlowTracker::*)(const cv::Range&), OpticalFlowTracker*, const std::_Placeholder<1>&>::type {aka std::_Bind<void (OpticalFlowTracker::*(OpticalFlowTracker*, std::_Placeholder<1>))(const cv::Range&)>}’
                   std::bind(&OpticalFlowTracker::calculateOpticalFlow, &tracker, placeholders::_1));

原因:这是因为opencv3不支持std::bind函数

解决方式:

1.安装opencv4,然后把CMakeLists.txt中的find_package(OpenCV 3 REQUIRED)中的3改成4(不建议)

2.使用修改后的适配opencv3的:

转自此大神修改后的optical_flow.cpp

 
#include <opencv2/opencv.hpp>
#include <string>
#include <chrono>
#include <Eigen/Core>
#include <Eigen/Dense>
 
using namespace std;
using namespace cv;
 
string file_1 = "../LK1.png";  // first image
string file_2 = "../LK2.png";  // second image
 
/**
 * single level optical flow
 * @param [in] img1 the first image
 * @param [in] img2 the second image
 * @param [in] kp1 keypoints in img1
 * @param [in|out] kp2 keypoints in img2, if empty, use initial guess in kp1
 * @param [out] success true if a keypoint is tracked successfully
 * @param [in] inverse use inverse formulation?
 */
void OpticalFlowSingleLevel(
    const Mat &img1,
    const Mat &img2,
    const vector<KeyPoint> &kp1,
    vector<KeyPoint> &kp2,
    vector<bool> &success,
    bool inverse = false,
    bool has_initial_guess = false
);
 
/**
 * multi level optical flow, scale of pyramid is set to 2 by default
 * the image pyramid will be create inside the function
 * @param [in] img1 the first pyramid
 * @param [in] img2 the second pyramid
 * @param [in] kp1 keypoints in img1
 * @param [out] kp2 keypoints in img2
 * @param [out] success true if a keypoint is tracked successfully
 * @param [in] inverse set true to enable inverse formulation
 */
void OpticalFlowMultiLevel(
    const Mat &img1,
    const Mat &img2,
    const vector<KeyPoint> &kp1,
    vector<KeyPoint> &kp2,
    vector<bool> &success,
    bool inverse = false
);
 
/**
 * get a gray scale value from reference image (bi-linear interpolated)
 * @param img
 * @param x
 * @param y
 * @return the interpolated value of this pixel
 */
inline float GetPixelValue(const cv::Mat &img, float x, float y) {
    // boundary check
    if (x < 0) x = 0;
    if (y < 0) y = 0;
    if (x >= img.cols) x = img.cols - 1;
    if (y >= img.rows) y = img.rows - 1;
    uchar *data = &img.data[int(y) * img.step + int(x)];
    float xx = x - floor(x);
    float yy = y - floor(y);
    return float(
        (1 - xx) * (1 - yy) * data[0] +
        xx * (1 - yy) * data[1] +
        (1 - xx) * yy * data[img.step] +
        xx * yy * data[img.step + 1]
    );
}
 
/// Optical flow tracker and interface
class OpticalFlowTracker: public cv::ParallelLoopBody  {
private:
    const Mat &img1;
    const Mat &img2;
    const vector<KeyPoint> &kp1;
    vector<KeyPoint> &kp2;
    vector<bool> &success;
    bool inverse = true;
    bool has_initial = false;
 
public:
    OpticalFlowTracker(
        const Mat &img1_,
        const Mat &img2_,
        const vector<KeyPoint> &kp1_,
        vector<KeyPoint> &kp2_,
        vector<bool> &success_,
        bool inverse_ = true, bool has_initial_ = false) :
        img1(img1_), img2(img2_), kp1(kp1_), kp2(kp2_), success(success_), inverse(inverse_),
        has_initial(has_initial_) {}
 
    //  void calculateOpticalFlow(const Range &range);
 
    virtual void operator()(const Range &range) const {
        // parameters
        int half_patch_size = 4;
        int iterations = 10;
        for (size_t i = range.start; i < range.end; i++) {
            auto kp = kp1[i];
            double dx = 0, dy = 0; // dx,dy need to be estimated
            if (has_initial) {
                dx = kp2[i].pt.x - kp.pt.x;
                dy = kp2[i].pt.y - kp.pt.y;
            }
 
            double cost = 0, lastCost = 0;
            bool succ = true; // indicate if this point succeeded
 
            // Gauss-Newton iterations
            Eigen::Matrix2d H = Eigen::Matrix2d::Zero();    // hessian
            Eigen::Vector2d b = Eigen::Vector2d::Zero();    // bias
            Eigen::Vector2d J;  // jacobian
            for (int iter = 0; iter < iterations; iter++) {
                if (inverse == false) {
                    H = Eigen::Matrix2d::Zero();
                    b = Eigen::Vector2d::Zero();
                } else {
                    // only reset b
                    b = Eigen::Vector2d::Zero();
                }
 
                cost = 0;
 
                // compute cost and jacobian
                for (int x = -half_patch_size; x < half_patch_size; x++)
                    for (int y = -half_patch_size; y < half_patch_size; y++) {
                        double error = GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y) -
                                    GetPixelValue(img2, kp.pt.x + x + dx, kp.pt.y + y + dy);;  // Jacobian
                        if (inverse == false) {
                            J = -1.0 * Eigen::Vector2d(
                                0.5 * (GetPixelValue(img2, kp.pt.x + dx + x + 1, kp.pt.y + dy + y) -
                                    GetPixelValue(img2, kp.pt.x + dx + x - 1, kp.pt.y + dy + y)),
                                0.5 * (GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y + 1) -
                                    GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y - 1))
                            );
                        } else if (iter == 0) {
                            // in inverse mode, J keeps same for all iterations
                            // NOTE this J does not change when dx, dy is updated, so we can store it and only compute error
                            J = -1.0 * Eigen::Vector2d(
                                0.5 * (GetPixelValue(img1, kp.pt.x + x + 1, kp.pt.y + y) -
                                    GetPixelValue(img1, kp.pt.x + x - 1, kp.pt.y + y)),
                                0.5 * (GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y + 1) -
                                    GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y - 1))
                            );
                        }
                        // compute H, b and set cost;
                        b += -error * J;
                        cost += error * error;
                        if (inverse == false || iter == 0) {
                            // also update H
                            H += J * J.transpose();
                        }
                    }
 
                // compute update
                Eigen::Vector2d update = H.ldlt().solve(b);
 
                if (std::isnan(update[0])) {
                    // sometimes occurred when we have a black or white patch and H is irreversible
                    cout << "update is nan" << endl;
                    succ = false;
                    break;
                }
 
                if (iter > 0 && cost > lastCost) {
                    break;
                }
 
                // update dx, dy
                dx += update[0];
                dy += update[1];
                lastCost = cost;
                succ = true;
 
                if (update.norm() < 1e-2) {
                    // converge
                    break;
                }
            }
 
            success[i] = succ;
 
            // set kp2
            kp2[i].pt = kp.pt + Point2f(dx, dy);
        }
    }
};
 
 
int main(int argc, char **argv) {
 
    // images, note they are CV_8UC1, not CV_8UC3
    Mat img1 = imread(file_1, 0);
    Mat img2 = imread(file_2, 0);
 
    // key points, using GFTT here.
    vector<KeyPoint> kp1;
    Ptr<GFTTDetector> detector = GFTTDetector::create(500, 0.01, 20); // maximum 500 keypoints
    detector->detect(img1, kp1);
 
    // now lets track these key points in the second image
    // first use single level LK in the validation picture
    vector<KeyPoint> kp2_single;
    vector<bool> success_single;
    OpticalFlowSingleLevel(img1, img2, kp1, kp2_single, success_single);
 
    // then test multi-level LK
    vector<KeyPoint> kp2_multi;
    vector<bool> success_multi;
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    OpticalFlowMultiLevel(img1, img2, kp1, kp2_multi, success_multi, true);
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "optical flow by gauss-newton: " << time_used.count() << endl;
 
    // use opencv's flow for validation
    vector<Point2f> pt1, pt2;
    for (auto &kp: kp1) pt1.push_back(kp.pt);
    vector<uchar> status;
    vector<float> error;
    t1 = chrono::steady_clock::now();
    cv::calcOpticalFlowPyrLK(img1, img2, pt1, pt2, status, error);
    t2 = chrono::steady_clock::now();
    time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "optical flow by opencv: " << time_used.count() << endl;
 
    // plot the differences of those functions
    Mat img2_single;
    cv::cvtColor(img2, img2_single, CV_GRAY2BGR);
    for (int i = 0; i < kp2_single.size(); i++) {
        if (success_single[i]) {
            cv::circle(img2_single, kp2_single[i].pt, 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_single, kp1[i].pt, kp2_single[i].pt, cv::Scalar(0, 250, 0));
        }
    }
 
    Mat img2_multi;
    cv::cvtColor(img2, img2_multi, CV_GRAY2BGR);
    for (int i = 0; i < kp2_multi.size(); i++) {
        if (success_multi[i]) {
            cv::circle(img2_multi, kp2_multi[i].pt, 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_multi, kp1[i].pt, kp2_multi[i].pt, cv::Scalar(0, 250, 0));
        }
    }
 
    Mat img2_CV;
    cv::cvtColor(img2, img2_CV, CV_GRAY2BGR);
    for (int i = 0; i < pt2.size(); i++) {
        if (status[i]) {
            cv::circle(img2_CV, pt2[i], 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_CV, pt1[i], pt2[i], cv::Scalar(0, 250, 0));
        }
    }
 
    cv::imshow("tracked single level", img2_single);
    cv::imshow("tracked multi level", img2_multi);
    cv::imshow("tracked by opencv", img2_CV);
    cv::waitKey(0);
 
    return 0;
}
 
void OpticalFlowSingleLevel(
    const Mat &img1,
    const Mat &img2,
    const vector<KeyPoint> &kp1,
    vector<KeyPoint> &kp2,
    vector<bool> &success,
    bool inverse, bool has_initial) {
    kp2.resize(kp1.size());
    success.resize(kp1.size());
    OpticalFlowTracker tracker(img1, img2, kp1, kp2, success, inverse, has_initial);
    parallel_for_(Range(0, kp1.size()), tracker);
}
 
 
 
void OpticalFlowMultiLevel(
    const Mat &img1,
    const Mat &img2,
    const vector<KeyPoint> &kp1,
    vector<KeyPoint> &kp2,
    vector<bool> &success,
    bool inverse) {
 
    // parameters
    int pyramids = 4;
    double pyramid_scale = 0.5;
    double scales[] = {1.0, 0.5, 0.25, 0.125};
 
    // create pyramids
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    vector<Mat> pyr1, pyr2; // image pyramids
    for (int i = 0; i < pyramids; i++) {
        if (i == 0) {
            pyr1.push_back(img1);
            pyr2.push_back(img2);
        } else {
            Mat img1_pyr, img2_pyr;
            cv::resize(pyr1[i - 1], img1_pyr,
                       cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
            cv::resize(pyr2[i - 1], img2_pyr,
                       cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
            pyr1.push_back(img1_pyr);
            pyr2.push_back(img2_pyr);
        }
    }
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "build pyramid time: " << time_used.count() << endl;
 
    // coarse-to-fine LK tracking in pyramids
    vector<KeyPoint> kp1_pyr, kp2_pyr;
    for (auto &kp:kp1) {
        auto kp_top = kp;
        kp_top.pt *= scales[pyramids - 1];
        kp1_pyr.push_back(kp_top);
        kp2_pyr.push_back(kp_top);
    }
 
    for (int level = pyramids - 1; level >= 0; level--) {
        // from coarse to fine
        success.clear();
        t1 = chrono::steady_clock::now();
        OpticalFlowSingleLevel(pyr1[level], pyr2[level], kp1_pyr, kp2_pyr, success, inverse, true);
        t2 = chrono::steady_clock::now();
        auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
        cout << "track pyr " << level << " cost time: " << time_used.count() << endl;
 
        if (level > 0) {
            for (auto &kp: kp1_pyr)
                kp.pt /= pyramid_scale;
            for (auto &kp: kp2_pyr)
                kp.pt /= pyramid_scale;
        }
    }
 
    for (auto &kp: kp2_pyr)
        kp2.push_back(kp);
}

同样direct_method.cpp:

且还有如下报错: mutex’ in namespace ‘std’ does not name a type

在最上面加入以下:

#include <thread>
#include <mutex>
#include <unistd.h>

完整版 direct_method.cpp如下:

#include <opencv2/opencv.hpp>
#include <sophus/se3.hpp>
#include <boost/format.hpp>
#include <pangolin/pangolin.h>
 
#include <thread>
#include <mutex>
#include <unistd.h>

using namespace std;
 
typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;
 
// Camera intrinsics
double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;
// baseline
double baseline = 0.573;
// paths
string left_file = "./left.png";
string disparity_file = "./disparity.png";
boost::format fmt_others("./%06d.png");    // other files
 
// useful typedefs
typedef Eigen::Matrix<double, 6, 6> Matrix6d;
typedef Eigen::Matrix<double, 2, 6> Matrix26d;
typedef Eigen::Matrix<double, 6, 1> Vector6d;
 
/**
 * pose estimation using direct method
 * @param img1
 * @param img2
 * @param px_ref
 * @param depth_ref
 * @param T21
 */
void DirectPoseEstimationMultiLayer(
        const cv::Mat &img1,
        const cv::Mat &img2,
        const VecVector2d &px_ref,
        const vector<double> depth_ref,
        Sophus::SE3d &T21
);
 
/**
 * pose estimation using direct method
 * @param img1
 * @param img2
 * @param px_ref
 * @param depth_ref
 * @param T21
 */
void DirectPoseEstimationSingleLayer(
        const cv::Mat &img1,
        const cv::Mat &img2,
        const VecVector2d &px_ref,
        const vector<double> depth_ref,
        Sophus::SE3d &T21
);
 
// bilinear interpolation
inline float GetPixelValue(const cv::Mat &img, float x, float y) {
    // boundary check
    if (x < 0) x = 0;
    if (y < 0) y = 0;
    if (x >= img.cols) x = img.cols - 1;
    if (y >= img.rows) y = img.rows - 1;
    uchar *data = &img.data[int(y) * img.step + int(x)];
    float xx = x - floor(x);
    float yy = y - floor(y);
    return float(
            (1 - xx) * (1 - yy) * data[0] +
            xx * (1 - yy) * data[1] +
            (1 - xx) * yy * data[img.step] +
            xx * yy * data[img.step + 1]
    );
}
 
/// class for accumulator jacobians in parallel
class JacobianAccumulator: public cv::ParallelLoopBody {
private:
    const cv::Mat &img1;
    const cv::Mat &img2;
    const VecVector2d &px_ref;
    const vector<double> depth_ref;
    Sophus::SE3d &T21;
    mutable VecVector2d projection; // projected points
 
    mutable std::mutex hessian_mutex;
    mutable Matrix6d H = Matrix6d::Zero();
    mutable Vector6d b = Vector6d::Zero();
    mutable double cost = 0;
 
public:
    JacobianAccumulator(
        const cv::Mat &img1_,
        const cv::Mat &img2_,
        const VecVector2d &px_ref_,
        const vector<double> depth_ref_,
        Sophus::SE3d &T21_) :
        img1(img1_), img2(img2_), px_ref(px_ref_), depth_ref(depth_ref_), T21(T21_) {
        projection = VecVector2d(px_ref.size(), Eigen::Vector2d(0, 0));
    }
 
    /// accumulate jacobians in a range
//    void accumulate_jacobian(const cv::Range &range);
 
 
    /// get hessian matrix
    Matrix6d hessian() const { return H; }
 
    /// get bias
    Vector6d bias() const { return b; }
 
    /// get total cost
    double cost_func() const { return cost; }
 
    /// get projected points
    VecVector2d projected_points() const { return projection; }
 
    /// reset h, b, cost to zero
    void reset() {
        H = Matrix6d::Zero();
        b = Vector6d::Zero();
        cost = 0;
    }
 
    virtual void operator()(const cv::Range& range) const {
 
        // parameters
        const int half_patch_size = 1;
        int cnt_good = 0;
        Matrix6d hessian = Matrix6d::Zero();
        Vector6d bias = Vector6d::Zero();
        double cost_tmp = 0;
 
        for (size_t i = range.start; i < range.end; i++) {
 
            // compute the projection in the second image
            Eigen::Vector3d point_ref =
                    depth_ref[i] * Eigen::Vector3d((px_ref[i][0] - cx) / fx, (px_ref[i][1] - cy) / fy, 1);
            Eigen::Vector3d point_cur = T21 * point_ref;
            if (point_cur[2] < 0)   // depth invalid
                continue;
 
            float u = fx * point_cur[0] / point_cur[2] + cx, v = fy * point_cur[1] / point_cur[2] + cy;
            if (u < half_patch_size || u > img2.cols - half_patch_size || v < half_patch_size ||
                v > img2.rows - half_patch_size)
                continue;
 
            projection[i] = Eigen::Vector2d(u, v);
            double X = point_cur[0], Y = point_cur[1], Z = point_cur[2],
                    Z2 = Z * Z, Z_inv = 1.0 / Z, Z2_inv = Z_inv * Z_inv;
            cnt_good++;
 
            // and compute error and jacobian
            for (int x = -half_patch_size; x <= half_patch_size; x++)
                for (int y = -half_patch_size; y <= half_patch_size; y++) {
 
                    double error = GetPixelValue(img1, px_ref[i][0] + x, px_ref[i][1] + y) -
                                   GetPixelValue(img2, u + x, v + y);
                    Matrix26d J_pixel_xi;
                    Eigen::Vector2d J_img_pixel;
 
                    J_pixel_xi(0, 0) = fx * Z_inv;
                    J_pixel_xi(0, 1) = 0;
                    J_pixel_xi(0, 2) = -fx * X * Z2_inv;
                    J_pixel_xi(0, 3) = -fx * X * Y * Z2_inv;
                    J_pixel_xi(0, 4) = fx + fx * X * X * Z2_inv;
                    J_pixel_xi(0, 5) = -fx * Y * Z_inv;
 
                    J_pixel_xi(1, 0) = 0;
                    J_pixel_xi(1, 1) = fy * Z_inv;
                    J_pixel_xi(1, 2) = -fy * Y * Z2_inv;
                    J_pixel_xi(1, 3) = -fy - fy * Y * Y * Z2_inv;
                    J_pixel_xi(1, 4) = fy * X * Y * Z2_inv;
                    J_pixel_xi(1, 5) = fy * X * Z_inv;
 
                    J_img_pixel = Eigen::Vector2d(
                            0.5 * (GetPixelValue(img2, u + 1 + x, v + y) - GetPixelValue(img2, u - 1 + x, v + y)),
                            0.5 * (GetPixelValue(img2, u + x, v + 1 + y) - GetPixelValue(img2, u + x, v - 1 + y))
                    );
 
                    // total jacobian
                    Vector6d J = -1.0 * (J_img_pixel.transpose() * J_pixel_xi).transpose();
 
                    hessian += J * J.transpose();
                    bias += -error * J;
                    cost_tmp += error * error;
                }
        }
 
        if (cnt_good) {
            // set hessian, bias and cost
            unique_lock<mutex> lck(hessian_mutex);
            H += hessian;
            b += bias;
            cost += cost_tmp / cnt_good;
        }
    }
 
 
};
 
 
 
int main(int argc, char **argv) {
 
    cv::Mat left_img = cv::imread(left_file, 0);
    cv::Mat disparity_img = cv::imread(disparity_file, 0);
    if (left_img.empty() || disparity_img.empty())
    {
        std::cout << "!!! Failed imread(): image not found" << std::endl;
        return 1;
    }
    // let's randomly pick pixels in the first image and generate some 3d points in the first image's frame
    cv::RNG rng;
    int nPoints = 2000;
    int boarder = 20;
    VecVector2d pixels_ref;
    vector<double> depth_ref;
    cout << "left_img.cols" << left_img.cols << endl;
    cout << "left_img: " << left_img << endl;
    // generate pixels in ref and load depth data
    for (int i = 0; i < nPoints; i++) {
        int x = rng.uniform(boarder, left_img.cols - boarder);  // don't pick pixels close to boarder
        int y = rng.uniform(boarder, left_img.rows - boarder);  // don't pick pixels close to boarder
        int disparity = disparity_img.at<uchar>(y, x);
        double depth = fx * baseline / disparity; // you know this is disparity to depth
        depth_ref.push_back(depth);
        pixels_ref.push_back(Eigen::Vector2d(x, y));
    }
 
    // estimates 01~05.png's pose using this information
    Sophus::SE3d T_cur_ref;
 
    for (int i = 1; i < 6; i++) {  // 1~10
        cv::Mat img = cv::imread((fmt_others % i).str(), 0);
        // try single layer by uncomment this line
        // DirectPoseEstimationSingleLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
        DirectPoseEstimationMultiLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
    }
    return 0;
}
 
void DirectPoseEstimationSingleLayer(
    const cv::Mat &img1,
    const cv::Mat &img2,
    const VecVector2d &px_ref,
    const vector<double> depth_ref,
    Sophus::SE3d &T21) {
 
    const int iterations = 10;
    double cost = 0, lastCost = 0;
    auto t1 = chrono::steady_clock::now();
    JacobianAccumulator jaco_accu(img1, img2, px_ref, depth_ref, T21);
 
    for (int iter = 0; iter < iterations; iter++) {
        jaco_accu.reset();
        cv::parallel_for_(cv::Range(0, px_ref.size()), jaco_accu);
        Matrix6d H = jaco_accu.hessian();
        Vector6d b = jaco_accu.bias();
 
        // solve update and put it into estimation
        Vector6d update = H.ldlt().solve(b);;
        T21 = Sophus::SE3d::exp(update) * T21;
        cost = jaco_accu.cost_func();
 
        if (std::isnan(update[0])) {
            // sometimes occurred when we have a black or white patch and H is irreversible
            cout << "update is nan" << endl;
            break;
        }
        if (iter > 0 && cost > lastCost) {
            cout << "cost increased: " << cost << ", " << lastCost << endl;
            break;
        }
        if (update.norm() < 1e-3) {
            // converge
            break;
        }
 
        lastCost = cost;
        cout << "iteration: " << iter << ", cost: " << cost << endl;
    }
 
    cout << "T21 = \n" << T21.matrix() << endl;
    auto t2 = chrono::steady_clock::now();
    auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "direct method for single layer: " << time_used.count() << endl;
 
    // plot the projected pixels here
    cv::Mat img2_show;
    cv::cvtColor(img2, img2_show, CV_GRAY2BGR);
    VecVector2d projection = jaco_accu.projected_points();
    for (size_t i = 0; i < px_ref.size(); ++i) {
        auto p_ref = px_ref[i];
        auto p_cur = projection[i];
        if (p_cur[0] > 0 && p_cur[1] > 0) {
            cv::circle(img2_show, cv::Point2f(p_cur[0], p_cur[1]), 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_show, cv::Point2f(p_ref[0], p_ref[1]), cv::Point2f(p_cur[0], p_cur[1]),
                     cv::Scalar(0, 250, 0));
        }
    }
    cv::imshow("current", img2_show);
    cv::waitKey();
}
 
 
void DirectPoseEstimationMultiLayer(
    const cv::Mat &img1,
    const cv::Mat &img2,
    const VecVector2d &px_ref,
    const vector<double> depth_ref,
    Sophus::SE3d &T21) {
 
    // parameters
    int pyramids = 4;
    double pyramid_scale = 0.5;
    double scales[] = {1.0, 0.5, 0.25, 0.125};
 
    // create pyramids
    vector<cv::Mat> pyr1, pyr2; // image pyramids
    for (int i = 0; i < pyramids; i++) {
        if (i == 0) {
            pyr1.push_back(img1);
            pyr2.push_back(img2);
        } else {
            cv::Mat img1_pyr, img2_pyr;
            cv::resize(pyr1[i - 1], img1_pyr,
                       cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
            cv::resize(pyr2[i - 1], img2_pyr,
                       cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
            pyr1.push_back(img1_pyr);
            pyr2.push_back(img2_pyr);
        }
    }
 
    double fxG = fx, fyG = fy, cxG = cx, cyG = cy;  // backup the old values
    for (int level = pyramids - 1; level >= 0; level--) {
        VecVector2d px_ref_pyr; // set the keypoints in this pyramid level
        for (auto &px: px_ref) {
            px_ref_pyr.push_back(scales[level] * px);
        }
 
        // scale fx, fy, cx, cy in different pyramid levels
        fx = fxG * scales[level];
        fy = fyG * scales[level];
        cx = cxG * scales[level];
        cy = cyG * scales[level];
        DirectPoseEstimationSingleLayer(pyr1[level], pyr2[level], px_ref_pyr, depth_ref, T21);
    }
 
}

图片可以改成绝对路径 : ./optical_flow 运行结果如下:

 ./build/direct_method :

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/787879.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

动态内存管理函数的使用与优化技巧(内存函数、柔性数组)

目录 前言 一、动态内存函数 为什么存在动态内存分配 动态内存函数介绍 malloc和free calloc realloc 常见的错误 经典笔试题目 二、C/C程序的内存开辟 三、柔性数组 柔性数组的特点&#xff1a; 柔性数组的使用 柔性数组的优势 前言 动态内存管理函数是C语言中非常重要的一部…

Verilog 学习之路(三)——牛客刷题篇

1.输入序列连续的序列检测 题面 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kJH9kHFH-1690301233803)(https://s2.loli.net/2023/07/26/HJPXR2mhbaVCG6d.png)]思路 对于序列检测题目&#xff0c;常规的解法有两种&#xff1a;状态机法和序列缓存…

需求管理全过程流程图及各阶段核心关注点详解

分析报告指出&#xff0c;多达76%的项目失败是因为差劲的需求管理&#xff0c;这个是项目失败的最主要原因&#xff0c;比落后的技术、进度失控或者混乱的变更管理还要关键。很多项目往往在开始的时候已经决定了失败&#xff0c;谜底就在谜面上&#xff0c;开始就注定的失败&am…

python-基本数据类型

hello&#xff0c;这里是Token_w的文章&#xff0c;主要讲解python的基础学习&#xff0c;希望对大家有所帮助 整理不易&#xff0c;感觉还不错的可以点赞收藏评论支持&#xff0c;感谢&#xff01; 有没有一个人&#xff0c;你想给TA传个小纸条&#xff1f;用恺撒密码一展身手…

【Docker】Docker Compose的配置与部署

文章目录 一、Docker Compose1. Docker Compose 的概述2. Docker Compose 三大的概念3. Docker Compose 环境安装 二、YAML 文件格式及编写注意事项1. YAML 文件格式2. YAML 格式的注意事项3. YAML 数据结构3.1 基本类型3.2 实例3.3 YAML 特殊类型文本块锚点与引用 三、Docker …

【【直流电机驱动PWN】】

直流电机驱动PWN 前面都是沙县小吃&#xff0c;这里才是满汉全席 直流电机是一种电能转化成机械能的装置 直流电机有两个电极 当电机正接 电机正转 当电机负接 电机倒转 电机还有步进电机 舵机 无刷电机 空心杯电机 因为电机是一个大功率器件并不太好直接接在IO端口上所以我…

2023 年牛客多校第一场题解(上)

A Almost Correct 题意&#xff1a;给定长度为 n n n 的 01 01 01 串 s s s&#xff0c;构造一个排序网络&#xff0c;使得能够将除 s s s 之外的任意 01 01 01 序列正确排序&#xff0c;且 s s s 无法被正确排序。 T T T 组测试&#xff0c; 1 ≤ T ≤ 1 0 4 1 \le T \…

ASEMI代理海矽美快恢复二极管SFP6002的特性和应用分析

编辑-Z 二极管SFP6002是一种常见的电子元件&#xff0c;也被称为快恢复二极管。它具有快速恢复时间和低反向恢复电流的特点&#xff0c;适用于高频电路和开关电源等应用。 SFP6002的主要特性包括&#xff1a; 1. 快速恢复时间&#xff1a;SFP6002具有快速的恢复时间&#xff…

Git Gui相关术语

文章目录 Git Gui主界面相关术语- Amend Last Commit&#xff08;修正最后一次提交&#xff09;- Rescan&#xff08;重新扫描&#xff09;- Sign Off&#xff08;签名&#xff09;- Stage Changed Git Gui Commit菜单相关术语- Stage to Commit&#xff08;暂存到提交&#xf…

Ceph组件

Ceph组件 无论是想向云平台提供Ceph 对象存和 Ceph 块设备服务、部署Ceph 文件系统,或者是将 Ceph 用于其他目的,所有 Ceph 存储集群部署都从设置每个 Ceph 节点、网络开始。 一个Ceph 存储集群至少需要一个Ceph Monitor、Ceph Manager和 Ceph OSD (OBJECT STORAGE DAEMON对象存…

【MySQL】十三,索引的代价、MySQL数据结构选择的合理性

索引的代价 空间上的代价 每建立一个索引都要为它建立一棵B树&#xff0c;每一棵B树的每一个节点都是一个数据页&#xff0c;一个页默认会占用 16KB 的存储空间&#xff0c;一棵很大的B树由许多数据页组成&#xff0c;那就是很大的一片存储空间。 时间上的代价 每次对表中的…

前端开发中的常见优化

目录 外观 兼容 不同尺寸&#xff08;包裹&#xff0c;height:100%&#xff09; 不同 浏览器 隐藏滚动条 的 不同属性名 重排->重绘 不显示 display:none->禁用disable 性能 导航重复&#xff08;修改原型push、replace方法&#xff09; 搜索防抖 import { debo…

【Docker】Docker私有仓库管理

目录 一 、Harbor 简介1.1 什么是Harbor1.2Harbor的特性1.3Harbor的构成 二、Harbor部署2.1 部署 Docker-Compose 服务2.2 部署 Harbor 服务2.3启动Harbor2.4 创建一个新项目2.5 在其他客户端上传镜像 三、配置Harbor 高可用四、维护管理Harbor4.1. 通过 Harbor Web 创建项目4.…

提升Web3安全性和用户体验:元事务和加密技术的应用

在Web3中&#xff0c;去中心化应用程序&#xff08;DApps&#xff09;是一种基于区块链技术的应用程序&#xff0c;它们通过智能合约实现透明、安全、去中心化的业务逻辑。然而&#xff0c;DApps的使用门槛比传统的中心化应用程序更高&#xff0c;需要用户具备一定的技术知识&a…

python简单入门

python简单入门 文章目录 python简单入门[toc] 地址链接1. 官网2. 下载地址3. 官方文档 1. 第一章1.1 python解释器1.2 基础语法1.2.1 常见数据类型1.2.2 强制类型转换1.2.3 注释1.2.4 运算符1.2.5 字符串1.2.5.1 字符串的定义1.2.5.2 字符串拼接1.2.5.3 格式化字符串1.2.5.3 精…

profinet 调试记录

一、 树莓派运行codesys runtime Codesys control for Raspberry Pi (外网) 链接&#xff1a;https://pan.baidu.com/s/1vgURlEG_y4C5rj7rALdOdQ?pwdfkhr 提取码&#xff1a;fkhr 1. 用户名称要以 root 登录 若是普通用户&#xff0c;会提示&#xff1a;脚本必须以 root 身…

Facebook Messenger市场营销,跨境电商不可忽略的营销手段

营销始于广告。广告仍然是不可或缺的&#xff0c;但广告的方式正在发生变化。以前商家会使用广告邮件或者直接转到网站上的产品页面&#xff0c;但是这两种方法都存在很大问题。虽然企业可以通过电子邮件与潜在客户保持联系&#xff0c;但不能保证这些潜在客户会真正看广告邮件…

【算法与数据结构】104、111、LeetCode二叉树的最大/最小深度

文章目录 一、题目二、层序遍历法三、递归法四、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、层序遍历法 思路分析&#xff1a;两道题都可以用层序遍历&#xff08;迭代法&#xff09;来做&#xff0c;遍历完…

通付盾获苏州市工业互联网产业联盟“工业互联网看苏州”先锋企业

近日&#xff0c;苏州市工业互联网产业联盟公布2022年度苏州市工业互联网产业联盟系列评选获评名单&#xff0c;通付盾荣获“工业互联网看苏州”先锋企业。 为加快推动工业互联网在数字赋能产业创新集群融合发展中发挥更显著作用&#xff0c;进一步完善苏州市工业互联网产业生态…

Docker Compose 容器编排 + Docker--harbor私有仓库部署与管理

目录 一、Docker Compose简介 1、Docker Compose 的YAML 文件格式及编写注意事项 2、Docker compose 使用的三个步骤 3、 Docker Compose配置常用字段 4、 Docker Compose 常用命令 5、 Docker Compose 文件结构 二&#xff1a; Docker Compose 安装 1、Docker Compose…