动态内存管理函数的使用与优化技巧(内存函数、柔性数组)

news2024/12/26 19:02:21

 

目录

前言

一、动态内存函数

为什么存在动态内存分配

动态内存函数介绍

malloc和free

calloc

realloc

常见的错误

经典笔试题目

二、C/C++程序的内存开辟

三、柔性数组

柔性数组的特点:

柔性数组的使用

柔性数组的优势


 

 

前言

动态内存管理函数是C语言中非常重要的一部分,也是程序员必须掌握的技能之一。本文将介绍动态内存管理函数的基本原理和使用方法,帮助读者更好地理解和应用这些函数。


一、动态内存函数

为什么存在动态内存分配

我们目前所了解的内存开辟方式有:

int val = 20;//在栈空间上开辟四个字节
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间

 但是上述的开辟空间的方式有两个特点:

  •  空间开辟大小是固定的。
  • 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。

但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编
译时开辟空间的方式就不能满足了。 这时候就只能试试动态存开辟了。

动态内存函数介绍

malloc和free

C语言提供了一个动态内存开辟的函数,函数原型如下:

void* malloc (size_t size);

 这个函数向内存堆区申请一块连续可用的空间,并返回指向这块空间的指针。

说起堆区,这里向大家简单科普一下计算及内存分部(不全):

8532b3a432294750b1d03c481db14585.png

 

  • 如果开辟成功,则返回一个指向开辟好空间的指针。
  • 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。
  • 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
  • 如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器。

 malloc函数申请的内存空间,当程序退出时才会还给操作系统。程序不退出,动态申请的空间不会还给操作系统。

 C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:

void free (void* ptr);

 free函数用来释放动态开辟的内存

  • 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
  • 如果参数 ptr 是NULL指针,则函数什么事都不做。

 举个例子:

malloc和free全都包含在stdlib.h头文件中

#include<stdio.h>
#include<stdlib.h>
int main()
{
	int* p = (int*)malloc(40);//40为字节数
	if (p == NULL)
	{
		perror("malloc");
		return 1;
	}
	int i = 0;
	for (i = 0; i < 10; i++)
	{
		printf("%d\n", *(p + i));
	}
	free(p);
    p=NULL;//p指向的空间被释放后,要将p置为NULL
	return 0;
}

malloc函数的返回类型为void*,所以 malloc函数并不知道开辟空间的类型,这需要使用者根据数据类型自己决定。

那malloc又是如何为p开辟空间的呢?

它们的内存分布关系如下:

e6cd344b98be4526b16c219f3df7de8e.png

 这里我们注意p,p是局部变量存放在栈区,p中存放的是在堆区动态开辟的空间地址(连续的空间),通过p来访问开辟的空间。

此外malloc申请到空间后,直接返回这片空间的起始地址,不会初始换空间内容。

calloc

除此之外,C语言还提供了一个函数叫 calloc , calloc 函数也用来动态内存分配。原型如下:

void* calloc (size_t num, size_t size);

 函数的功能是:

  1. 为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。
  2. 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。

 举个例子:

int main()
{
	int* p = (int*)calloc(10, sizeof(int));
	if (p == NULL)
	{
		perror("calloc");
		return 1;
	}
	int i = 0;
	for (i = 0; i < 10; i++)
	{
		printf("%d\n", *(p + i));
	}
	free(p);
	p = NULL;
	return 0;
}

 通过调试我们也可以观察到:

fa6ba5ba38364468a086323b79d4e8cd.png 所以如何我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。

realloc

  • realloc函数的出现让动态内存管理更加灵活。
  • 有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的使用内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。

 函数原型:

void* realloc (void* ptr, size_t size);
  • ptr 是要调整的内存地址
  • size 调整之后新大小
  • 返回值为调整之后的内存起始位置。
  • 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到 新 的空间,同时也会释放掉旧空间。

 realloc在调整内存空间的是存在两种情况:

情况1:原有空间之后有足够大的空间,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。

a078ed4aa97b4a41a80b42ab4ed95a2a.png

 情况2:原有空间之后没有足够大的空间,原有空间之后没有足够多的空间时,就会在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。

 1ae8dd451d8e4c8a818b56f902f4a1bb.png

 举个例子:

int main()
{
	//开辟空间
	int* p = (int*)malloc(40);
	if (p == NULL)
	{
		perror("malloc");
		return 1;
	}
	//初始化为1~10
	int i = 0;
	for (i = 0; i < 10; i++)
	{
		p[i] = i + 1;
	}
	//扩容空间
	int* ptr =(int*) realloc(p, 80);
	if (ptr != NULL)
	{
		p = ptr;
	}
	else
	{
		perror("realloc");
		return 1;
	}
	//输出
	for (i = 0; i < 20; i++)
	{
		printf("%d ", p[i]);
	}
	//释放空间
	free(p);
	p = NULL;
	return 0;
}

 在扩容空间时需要注意realloc是否扩容成功,切勿直接将realloc返回值赋给p,这样可能会导致原先空间的数据丢失。

常见的错误

  • 对NULL指针的解引用操作
void test()
{
int *p = (int *)malloc(INT_MAX/4);
*p = 20;
free(p);
}

 使用p时并没有进行判断,如果p的值是NULL,就会有问题。

  • 对动态开辟空间的越界访问
void test()
{
int i = 0;
int *p = (int *)malloc(10*sizeof(int));
if(NULL == p)
{
return ;
}
for(i=0; i<=10; i++)
{
*(p+i) = i;
}
free(p);
}

 malloc开辟的空间用完,没有及时扩容,当i是10的时候越界访问。

  • 对非动态开辟内存使用free释放
void test()
{
int a = 10;
int *p = &a;
free(p);
}

这种做法也是错误的,free函数只能释放动态内存函数开辟的空间。 

  • 使用free释放一块动态开辟内存的一部分
void test()
{
int *p = (int *)malloc(100);
p++;
free(p);//p不再指向动态内存的起始位置
}

 这种做法也是错误的,释放空间时必须将开辟的空间完整释放。

  • 对同一块动态内存多次释放
void test()
{
int *p = (int *)malloc(100);
free(p);
free(p);//重复释放
}

 这种情况也是错误的,程序会出现报错,为了避免这样的问题,要养成良好的习惯,释放空间后,将p及时置为NULL。

  • 动态开辟内存忘记释放(内存泄漏)
void test()
{
int *p = (int *)malloc(100);
if(NULL != p)
{
*p = 20;
}
}
int main()
{
test();
while(1);
}

 这里在test函数中进行动态内存开辟,但是出来test函数p就被销毁了,但在堆区开辟的空间并没有,这就导致无法找到开辟空间的具体位置进行释放,程序不结束,申请的空间就再也无法使用。

在实际场景中是非常恶心的,在大多数的程序中,服务器都是每天24小时运行,动态开辟内存忘记释放就会导致可用内存逐渐减小,最后到上限,程序崩溃。

注意:动态申请的内存不会因为出了作用域就自动销毁释放(内存还给操作系统),只有两种释放方式:

  • free
  • 程序结束(退出)

 经典笔试题目

题目1:

void GetMemory(char *p)
{
p = (char *)malloc(100);
}
void Test(void)
{
char *str = NULL;
GetMemory(str);
strcpy(str, "hello world");
printf(str);
}
int main()
{
 test();
 return 0;
}

 这段代码运行结果是什么?

程序会挂掉,原因是访问空指针。为什么呢?

GetMemory函数传过去的是str,而并非是&str,这就是传值调用,并不会对str有影响。所以strcpy复制时访问的就是空指针,程序就挂掉了。

这个程序存在两个问题:

  • 对NULL指针进行解引用操作,程序崩溃
  • 没有释放空间,内存泄露问题

题目2:

char *GetMemory(void)
{
char p[] = "hello world";
return p;
}
void Test(void)
{
char *str = NULL;
str = GetMemory();
printf(str);
}
int main()
{
 test();
 return 0;
}

 程序运行结果是什么?

输出乱码,相当于是非法访问。GetMemory中创建一个数组p,返回数组的首元素地址,但是一旦出了GetMemory函数,存放hello world的空间就可能会被覆盖,所以输出结果会是乱码。

 题目3:

void GetMemory(char **p, int num)
{
*p = (char *)malloc(num);
}
void Test(void)
{
char *str = NULL;
GetMemory(&str, 100);
strcpy(str, "hello");
printf(str);
}

运行 test函数结果是什么?

输出是:hello,这段代码看起来似乎并没有什么错误,但仔细的观察我们就会发现,没有释放空间。

应该在打印之后将str释放,并置为NULL。

题目4:

void Test(void)
{
char *str = (char *) malloc(100);
strcpy(str, "hello");
free(str);
if(str != NULL)
{
strcpy(str, "world");
printf(str);
}
}

 test函数运行结果是什么?

或许大多数人看到的第一反映是:free的太早了,但是我们如果把free放在输出之后,又会显得很突兀,为什么突然判断是否为空?str指向的空间虽然被释放了,但str并不为NULL,无论怎么判断,str都不为NULL,被释放后的str就变成了野指针,这样是很危险的。

所以这道题根本错误点在于:空间释放之后,并没有将str及时置为NULL。

 这些题目都出自于一本书——《高质量的C-C++编程》,在早些年线下笔试时,有不少的公司笔试时出的都是这几到中的原题。所以希望大家能够好好的理解,并掌握这部分知识。

二、C/C++程序的内存开辟

趁着动态内存函数来向大家讲解一下C程序中内存的开辟

937a3391c7584b7ab22307f9fed292e1.png

 如上图,C/C++内存分配的几个区域:

  • 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。
  • 堆区:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配方式类似于链表。
  •  数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
  •  代码段:存放函数体(类成员函数和全局函数)的二进制代码

 有了这幅图,我们就可以更好的理解在《C语言初识》中讲的static关键字修饰局部变量的例子了

实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁所以生命周期变长。

三、柔性数组

或许大多数人从来没有听说过柔性数组这个概念,但是它确实是存在。 C99 中,结构中的最
后一个元素允许是未知大小的数组
,这就叫做『柔性数组』成员。

注意:一个结构体中,只允许创建一个柔性数组

例如:

typedef struct st_type
{
int i;
int a[0];//柔性数组成员
}type_a;

 或者:

typedef struct st_type
{
int i;
int a[];//柔性数组成员
}type_a;

 柔性数组的特点:

  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof 返回的这种结构大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。

 例如:

typedef struct st_type
{
int i;
int a[0];//柔性数组成员
}type_a;
printf("%d\n", sizeof(type_a));//输出的是4

 这与指针也有所不同,在创建的结构中,包含指针变量时,sizeof计算会计算上,指针变量的大小,而柔性数组不会被计算大小。

柔性数组的使用

柔性数组如何体现它的柔性呢?

这就要配合malloc动态内存函数使用,例如:

struct S {
	int n;
	int arr[0];
};
int main()
{
	struct S* pc = (struct S*)malloc(sizeof(struct S) + 40);
	if (pc == NULL)
	{
		perror("malloc");
		return 1;
	}
	pc->n = 10;
	for (int i = 0; i < 10; i++)
	{
		pc->arr[i] = 1 + i;
	}
	for (int i = 0; i < 10; i++)
	{
		printf("%d ", pc->arr[i]);
	}
	free(pc);
	pc = NULL;
	return 0;
}

 malloc(sizeof(struct S) + 40);后边加的40就是开辟40个字节,也就是开辟10个整形空间给数组arr。可能有人会想,这有什么好讲的,变长数组不也可以吗?想开多打开多大。

对于柔性数组,当你觉得开辟的空间不够用时,还可以使用realloc去扩容。

例如:

struct S {
	int n;
	int arr[0];
};
int main()
{
	struct S* pc = (struct S*)malloc(sizeof(struct S) + 40);
	if (pc == NULL)
	{
		perror("malloc");
		return 1;
	}
	pc->n = 10;
	for (int i = 0; i < 10; i++)
	{
		pc->arr[i] = 1 + i;
	}
	//空间不够扩容
	struct S* ptr = (struct S*)realloc(pc, sizeof(struct S) + 60);
	if (ptr == NULL)
	{
		perror("realloc");
		return 1;
	}
	pc = ptr;
	pc->n = 15;
	for (int i = 0; i < 15; i++)
	{
		printf("%d ", pc->arr[i]);
	}
	//释放
	free(pc);
	pc = NULL;
	return 0;
}

 运行结果:

f0843f95749d4cc593307d353b8eeecf.png

 后五个没有进行初始化,所以是随机数。

柔性数组的优势

对于上述的柔性数组,我们还可以这样模仿实现:

struct S {
	int n;
	int* arr;
};
int main()
{
	struct S* pc = (struct S*)malloc(sizeof(struct S));
	if (pc == NULL)
	{
		perror("malloc");
		return 1;
	}
	pc->n = 10;
	pc->arr = (int*)malloc(40);
	if (pc->arr == NULL)
	{
		perror("pc->arr");
		return 1;
	}

	for (int i = 0; i < 10; i++)
	{
		pc->arr[i] = 1 + i;
	}
	//空间不够扩容
	int* ptr = (int*)realloc(pc->arr, 60);
	if (ptr == NULL)
	{
		perror("realloc");
		return 1;
	}
	pc->arr= ptr;
	pc->n = 15;
	for (int i = 0; i < 15; i++)
	{
		printf("%d ", pc->arr[i]);
	}
	//释放
	free(pc->arr);
	pc->arr = NULL;
	free(pc);
	pc = NULL;
	return 0;
}

 上述 代码1 和 代码2 可以完成同样的功能,但是 方法1 的实现比较好,有两个好处:

  • 方便内存释放

如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。

 

  • 有利于访问速度

 连续的内存有益于提高访问速度,也有益于减少内存碎片。

 


总结

动态内存管理函数是C语言中非常重要的一部分,掌握它们对于程序员来说至关重要。希望本文能够对读者有所启发和帮助

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/787878.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Verilog 学习之路(三)——牛客刷题篇

1.输入序列连续的序列检测 题面 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kJH9kHFH-1690301233803)(https://s2.loli.net/2023/07/26/HJPXR2mhbaVCG6d.png)]思路 对于序列检测题目&#xff0c;常规的解法有两种&#xff1a;状态机法和序列缓存…

需求管理全过程流程图及各阶段核心关注点详解

分析报告指出&#xff0c;多达76%的项目失败是因为差劲的需求管理&#xff0c;这个是项目失败的最主要原因&#xff0c;比落后的技术、进度失控或者混乱的变更管理还要关键。很多项目往往在开始的时候已经决定了失败&#xff0c;谜底就在谜面上&#xff0c;开始就注定的失败&am…

python-基本数据类型

hello&#xff0c;这里是Token_w的文章&#xff0c;主要讲解python的基础学习&#xff0c;希望对大家有所帮助 整理不易&#xff0c;感觉还不错的可以点赞收藏评论支持&#xff0c;感谢&#xff01; 有没有一个人&#xff0c;你想给TA传个小纸条&#xff1f;用恺撒密码一展身手…

【Docker】Docker Compose的配置与部署

文章目录 一、Docker Compose1. Docker Compose 的概述2. Docker Compose 三大的概念3. Docker Compose 环境安装 二、YAML 文件格式及编写注意事项1. YAML 文件格式2. YAML 格式的注意事项3. YAML 数据结构3.1 基本类型3.2 实例3.3 YAML 特殊类型文本块锚点与引用 三、Docker …

【【直流电机驱动PWN】】

直流电机驱动PWN 前面都是沙县小吃&#xff0c;这里才是满汉全席 直流电机是一种电能转化成机械能的装置 直流电机有两个电极 当电机正接 电机正转 当电机负接 电机倒转 电机还有步进电机 舵机 无刷电机 空心杯电机 因为电机是一个大功率器件并不太好直接接在IO端口上所以我…

2023 年牛客多校第一场题解(上)

A Almost Correct 题意&#xff1a;给定长度为 n n n 的 01 01 01 串 s s s&#xff0c;构造一个排序网络&#xff0c;使得能够将除 s s s 之外的任意 01 01 01 序列正确排序&#xff0c;且 s s s 无法被正确排序。 T T T 组测试&#xff0c; 1 ≤ T ≤ 1 0 4 1 \le T \…

ASEMI代理海矽美快恢复二极管SFP6002的特性和应用分析

编辑-Z 二极管SFP6002是一种常见的电子元件&#xff0c;也被称为快恢复二极管。它具有快速恢复时间和低反向恢复电流的特点&#xff0c;适用于高频电路和开关电源等应用。 SFP6002的主要特性包括&#xff1a; 1. 快速恢复时间&#xff1a;SFP6002具有快速的恢复时间&#xff…

Git Gui相关术语

文章目录 Git Gui主界面相关术语- Amend Last Commit&#xff08;修正最后一次提交&#xff09;- Rescan&#xff08;重新扫描&#xff09;- Sign Off&#xff08;签名&#xff09;- Stage Changed Git Gui Commit菜单相关术语- Stage to Commit&#xff08;暂存到提交&#xf…

Ceph组件

Ceph组件 无论是想向云平台提供Ceph 对象存和 Ceph 块设备服务、部署Ceph 文件系统,或者是将 Ceph 用于其他目的,所有 Ceph 存储集群部署都从设置每个 Ceph 节点、网络开始。 一个Ceph 存储集群至少需要一个Ceph Monitor、Ceph Manager和 Ceph OSD (OBJECT STORAGE DAEMON对象存…

【MySQL】十三,索引的代价、MySQL数据结构选择的合理性

索引的代价 空间上的代价 每建立一个索引都要为它建立一棵B树&#xff0c;每一棵B树的每一个节点都是一个数据页&#xff0c;一个页默认会占用 16KB 的存储空间&#xff0c;一棵很大的B树由许多数据页组成&#xff0c;那就是很大的一片存储空间。 时间上的代价 每次对表中的…

前端开发中的常见优化

目录 外观 兼容 不同尺寸&#xff08;包裹&#xff0c;height:100%&#xff09; 不同 浏览器 隐藏滚动条 的 不同属性名 重排->重绘 不显示 display:none->禁用disable 性能 导航重复&#xff08;修改原型push、replace方法&#xff09; 搜索防抖 import { debo…

【Docker】Docker私有仓库管理

目录 一 、Harbor 简介1.1 什么是Harbor1.2Harbor的特性1.3Harbor的构成 二、Harbor部署2.1 部署 Docker-Compose 服务2.2 部署 Harbor 服务2.3启动Harbor2.4 创建一个新项目2.5 在其他客户端上传镜像 三、配置Harbor 高可用四、维护管理Harbor4.1. 通过 Harbor Web 创建项目4.…

提升Web3安全性和用户体验:元事务和加密技术的应用

在Web3中&#xff0c;去中心化应用程序&#xff08;DApps&#xff09;是一种基于区块链技术的应用程序&#xff0c;它们通过智能合约实现透明、安全、去中心化的业务逻辑。然而&#xff0c;DApps的使用门槛比传统的中心化应用程序更高&#xff0c;需要用户具备一定的技术知识&a…

python简单入门

python简单入门 文章目录 python简单入门[toc] 地址链接1. 官网2. 下载地址3. 官方文档 1. 第一章1.1 python解释器1.2 基础语法1.2.1 常见数据类型1.2.2 强制类型转换1.2.3 注释1.2.4 运算符1.2.5 字符串1.2.5.1 字符串的定义1.2.5.2 字符串拼接1.2.5.3 格式化字符串1.2.5.3 精…

profinet 调试记录

一、 树莓派运行codesys runtime Codesys control for Raspberry Pi (外网) 链接&#xff1a;https://pan.baidu.com/s/1vgURlEG_y4C5rj7rALdOdQ?pwdfkhr 提取码&#xff1a;fkhr 1. 用户名称要以 root 登录 若是普通用户&#xff0c;会提示&#xff1a;脚本必须以 root 身…

Facebook Messenger市场营销,跨境电商不可忽略的营销手段

营销始于广告。广告仍然是不可或缺的&#xff0c;但广告的方式正在发生变化。以前商家会使用广告邮件或者直接转到网站上的产品页面&#xff0c;但是这两种方法都存在很大问题。虽然企业可以通过电子邮件与潜在客户保持联系&#xff0c;但不能保证这些潜在客户会真正看广告邮件…

【算法与数据结构】104、111、LeetCode二叉树的最大/最小深度

文章目录 一、题目二、层序遍历法三、递归法四、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、层序遍历法 思路分析&#xff1a;两道题都可以用层序遍历&#xff08;迭代法&#xff09;来做&#xff0c;遍历完…

通付盾获苏州市工业互联网产业联盟“工业互联网看苏州”先锋企业

近日&#xff0c;苏州市工业互联网产业联盟公布2022年度苏州市工业互联网产业联盟系列评选获评名单&#xff0c;通付盾荣获“工业互联网看苏州”先锋企业。 为加快推动工业互联网在数字赋能产业创新集群融合发展中发挥更显著作用&#xff0c;进一步完善苏州市工业互联网产业生态…

Docker Compose 容器编排 + Docker--harbor私有仓库部署与管理

目录 一、Docker Compose简介 1、Docker Compose 的YAML 文件格式及编写注意事项 2、Docker compose 使用的三个步骤 3、 Docker Compose配置常用字段 4、 Docker Compose 常用命令 5、 Docker Compose 文件结构 二&#xff1a; Docker Compose 安装 1、Docker Compose…

【C#】并行编程实战:基于任务的异步编程基础(下)

第八章介绍了 C# 中可用异步编程的实践和解决方案&#xff0c;还讨论了何时适合使用异步编程等。本章主要介绍 async 和 await 关键字。 其实在之前的学习中&#xff0c;大家都已经了解过这两个关键字了&#xff0c;用得非常多。其实我觉得没有必要再赘述了&#xff0c;不过这里…