m基于功率谱,高阶累积量和BP神经网络-GRNN网络的调制方式识别仿真,对比2psk,4PSK,2FSK以及4FSK

news2025/1/17 18:02:18

目录

1.算法描述

2.仿真效果预览

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

       首先区分大类的话采用的基于功率谱提取的len参数(峰值频率间隔),用峰值个数来代替,这样能很好的区分大类把MFSK和MPSK信号区分开。

针对MPSK:

一:基于瞬时参数——Char2你采用的这个是零中心非弱信号段瞬时相位非线性分量的标准偏差,这个是用来区分2PSK和4PSK的。

二:高阶累积量——针对MPSK高阶累积量的组合在高斯噪声以及多径下能较好的区分MPSK信号。

三:谱相关系数——参考文献(1)中基于谱相关的调制识别,采用谱相关系数在的最大值C可区分2PSK和4PSK。(文献1中4.3节中4.3.2的第四个特征参数)

四:循环累积量——针对MPSK循环累积量在多径下识别率较高,主要是计算量大,复杂度高的特点,区分效果和高阶累积量相同,也是具有抗多径的效果。

五:小波——参考文献(2)针对MPSK的调制识别,码元交界处有幅度不同的跳变,跳变的幅度个数表征PSK的调制阶数,这种特征提取需要进行符号速率估计!(文献2中5.1.4节PSK中的信号阶数判别)

六:M次方谱——参考文献(3),对于BPSK信号的平方谱在2倍载频处有很强的单频分量,其他的PSK信号无此特性,QPSK信号的四次方谱在2倍载频处有单频分量,所以M次方谱的单频分量的检测可以区分信号MPSK信号。

        广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,还可以处理不稳定数据。虽然GRNN看起来没有径向基精准,但实际在分类和拟合上,特别是数据精准度比较差的时候有着很大的优势。

       GRNN是RBF的一种改进,结构相似。区别就在于多了一层求和层,而去掉了隐含层与输出层的权值连接(对高斯权值的最小二乘叠加)。

1.输入层为向量,维度为m,样本个数为n,线性函数为传输函数。

2.隐藏层与输入层全连接,层内无连接,隐藏层神经元个数与样本个数相等,也就是n,传输函数为径向基函数。

3.加和层中有两个节点,第一个节点为每个隐含层节点的输出和,第二个节点为预期的结果与每个隐含层节点的加权和。

4.输出层输出是第二个节点除以第一个节点。

2.仿真效果预览

matlab2022a仿真结果如下:

 

 

3.MATLAB核心程序

clc;
clear;
close all;
warning off;
addpath 'func\'
%全局变量
parameters;
 
 
SNR0   = inf;
N0     = 50000;
 
 
y_2FSK = zeros(1,N0);
y_4FSK = zeros(1,N0);
y_2PSK = zeros(1,N0);
y_4PSK = zeros(1,N0);
 
 
%2FSK
y_2FSK = func_2FSK(N0);
%4FSK
y_4FSK = func_4FSK(N0);
%BPSK
y_2PSK = func_2PSK(N0);
%QPSK
y_4PSK = func_4PSK(N0);
 
 
%调制识别
y_2FSKn = func_add_noise(y_2FSK,SNR0); 
y_4FSKn = func_add_noise(y_4FSK,SNR0);
y_2PSKn = func_add_noise(y_2PSK,SNR0);
y_4PSKn = func_add_noise(y_4PSK,SNR0);
 
 
%首先进行FSK和PSK两种模式的区分
Ns      = 2048;
%用x进行功率谱估计 
[p1,f1] = func_power(y_2FSKn,Ns);
[p2,f2] = func_power(y_4FSKn,Ns);
[p3,f3] = func_power(y_2PSKn,Ns);
[p4,f4] = func_power(y_4PSKn,Ns);
 
 
 
len1 = func_fsk_psk_check(p1);
len2 = func_fsk_psk_check(p2);
len3 = func_fsk_psk_check(p3);
len4 = func_fsk_psk_check(p4);
 
 
 
 
%根据参数获得FSK和PSK区分参数
Level= (mean([len1,len2]) - mean([len3,len4]))/2;
 
%分别提取FSK和PSK的不同调制方式的特征参数
char1   = real(func_para_check(y_2FSKn,N0));
char2   = real(func_para_check(y_4FSKn,N0));
char3   = real(func_para_check(y_2PSKn,N0));
char4   = real(func_para_check(y_4PSKn,N0));
 
 
 
 
%通过GRNN神经网络进行训练
char    = [char1;char2]';
T       = [1;2]';
net_fsk = newgrnn(char,T,1.2);
 
char    = [char3;char4]';
T       = [1;2]';
net_psk = newgrnn(char,T,1.2); 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%加载信号进行测试
%通过大量的循环测试,计算正确率
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
zql  = 0;
 
%运行的时候,尽量将下面的两个参数指标设置大点,这样结果才精确
MTKL  = 100;
SNRS  = [5:0.25:9,10:15];
Bers  = zeros(length(SNRS),1);
 
for jj = 1:length(SNRS)
    for i = 1:MTKL
        SNRS(jj)
        i
        s = RandStream('mt19937ar','Seed',i);
        RandStream.setGlobalStream(s);
        %长度
        N      = N0;
        %SNR
        SNR    = SNRS(jj);
        %2FSK
        y_2FSK = func_2FSK(N);
        %4FSK
        y_4FSK = func_4FSK(N);
        %BPSK
        y_2PSK = func_2PSK(N);
        %QPSK
        y_4PSK = func_4PSK(N);
 
        
        
        %设置单独的一种调制信号
        tmps   = [1,1,1,1];%2FSK
        if tmps(1) == 1
           datas = y_2FSK;
        end
        if tmps(1) == 2
           datas = y_4FSK;
        end
        if tmps(1) == 3
           datas = y_2PSK;
        end
        if tmps(1) == 4
           datas = y_4PSK;
        end
 
        datas  = func_multipath(datas);
        data   = func_add_noise(datas,SNR); 
 
 
        [p,f] = func_power(data,Ns);
        len   = func_fsk_psk_check(p);
 
 
        flag  = 0;
        %首先进行FSK和PSK两种模式的区分
        if len >= Level%为FSK模式
           %根据识别参数进行调制类型的辨识
           char = real(func_para_check(data,length(data)));
           T    = round(sim(net_fsk,char'));
           if T == 1
              flag = 1;
           end
           if T == 2
              flag = 2;
           end
        else%为PSK模式
           %根据识别参数进行调制类型的辨识
           char = real(func_para_check(data,length(data)));
           T    = round(sim(net_psk,char'));
           if T == 1
              flag = 3;
           end
           if T == 2
              flag = 4;
           end
        end
        if flag == tmps(1)
           zql = zql + 1;
        end
    end
 
    %识别正确率
    Bers(jj) = zql/MTKL;
    zql      = 0;
end
 
 
R = 100*mean(Bers,2);
01-126m

4.完整MATLAB

V

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/78636.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VSCode-远程连接服务器进行开发

一:安装插件 二:设置SSH 按照划线位置依次配置要连接的服务器配置 三:打开远程连接选项 勾选此选项后即可显示配置好的远程服务器,点击登录即可。 输入服务器用户密码 注意 :终端框install不要关闭!&#…

基于MPS算法和改进的非支配排序遗传算法II(MNSGA-II)求解配备起重机的模糊鲁棒设施布局问题(Matlab代码实现)

👨‍🎓个人主页:研学社的博客 💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜…

【C语言航路】第八站:调试(第二幕)

目录 四、一些调试的实例 1.实例一 2.实例二 五、如何写出优秀的,易于调试的代码 1.优秀的代码 2.几个经典的例子 (1)模拟实现strcpy函数 (2)模拟实现strlen 六、编程常见的错误 1.编译型错误 2.链接型错误 …

Spring学习:学完总结

前言: 此次学习大概花了6天的时间,不过只是浅浅的学到了皮毛,所以后面有新的理解就会持续更新!下面是一些重点总结。 总结: 一、Spring概述 1.1 什么是Spring (1)全称:EJB(sun企…

alibaba微服务组件sentinel

alibaba微服务组件sentinel 官方文档:https://sentinelguard.io/zh-cn/docs/introduction.html 官方示例:https://github.com/alibaba/Sentinel/tree/master/sentinel-demo 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Senti…

MYSQL数据库-索引

MYSQL数据库-索引零、前言一、索引概念二、认识磁盘三、理解索引1、如何理解Page2、B vs B3、聚簇索引 VS 非聚簇索引4、普通索引5、总结四、索引操作1、创建索引2、查询索引3、删除索引零、前言 本章主要讲解MYSQL数据库中的索引这一重要知识点 一、索引概念 索引的价值&…

Allegro如何打印光绘层操作指导Plot模式

Allegro如何打印光绘层操作指导Plot模式 Allegro支持把视图打印成pdf格式的文件,下面介绍用plot模式打印,具体操作如下 打开光绘设置 确保光绘设置都是正确的 选择file-plot setup 出现打印设置的参数,常规默认即可,如果需要打印黑白的,选择Black and white 选择ok …

无人机无线传感器网络中的节能数据采集(Matlab代码实现)

👨‍🎓个人主页:研学社的博客 💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜…

【LeetCode】1691. 堆叠长方体的最大高度

题目描述 给你 n 个长方体 cuboids &#xff0c;其中第 i 个长方体的长宽高表示为 cuboids[i] [widthi, lengthi, heighti]&#xff08;下标从 0 开始&#xff09;。请你从 cuboids 选出一个 子集 &#xff0c;并将它们堆叠起来。 如果 widthi < widthj 且 lengthi < le…

React学习笔记:组件

组件 将页面按照界面功能进行拆分&#xff0c;每一块界面都拥有自己的独立逻辑&#xff08;组件&#xff09;&#xff0c;这样可以提高项目代码的可维护性和复用性。 如上图所示将这个卡片分为三个组件&#xff0c;那么当需要添加一个这样的卡片时&#xff0c;就可以复用这些…

【Java进阶篇】第八章 反射与注解

文章目录一、反射机制概述1、作用2、相关类二、反射1、获取Class的三种方式2、通过反射机制实例化对象3、forName方法的另一个应用4、获取类路径下文件的绝对路径5、资源绑定器ResourceBundle6、类加载器三、反射与反编译1、获取Field2、反编译Field3、通过反射机制访问对象的属…

Akka 学习(七)Actor的生命周期

在Actor的生命周期中会调用几个方法&#xff0c;我们在需要时可以重写这些方法。 ● prestart()&#xff1a;在构造函数之后调用。 ● postStop()&#xff1a;在重启之前调用。 ● preRestart(reason, message)&#xff1a;默认情况下会调用postStop()。 ● postRestart()&…

D/A转换器

性能指标&#xff1a;转换精度&#xff0c;转换速度 相互之间是矛盾的&#xff0c;精度越高&#xff0c;相比而言速度就会慢一些 权电阻网络D/A转换器 阻值的选取是按照二进制的位权来选择的&#xff0c;所以我们看到了这个结构&#xff0c;和我们刚才分析的是一致的 权电阻网…

基于花授粉算法优化的lssvm回归预测-附代码

基于花授粉算法优化的lssvm回归预测 - 附代码 文章目录基于花授粉算法优化的lssvm回归预测 - 附代码1.数据集2.lssvm模型3.基于花授粉算法优化的LSSVM4.测试结果5.Matlab代码摘要&#xff1a;为了提高最小二乘支持向量机&#xff08;lssvm&#xff09;的回归预测准确率&#xf…

c++11 std::thread和mutex用法

c11 std::thread和mutex用法thread和mutex用法thread简单示例thread构造函数梳理thread关键成员函数mutex使用thread和mutex用法 本文对c 11中的std::thread 和 mutex作简要的使用说明 thread简单示例 #include <iostream> #include <string> #include <thre…

mysql性能监控

一.使用show profile查询剖析工具&#xff0c;查看mysql语句执行时间&#xff1a; 官网&#xff1a;https://dev.mysql.com/doc/refman/8.0/en/show-profile.html mysql -uroot -p //进入数据库服务器 use 数据库名 //进入数据库 set profiling1; //开启profiling参数 select…

Python基础(十二):字典的详细讲解

文章目录 字典的详细讲解 一、字典的应用场景 二、创建字典的语法

具身智能综述和应用(Embodied AI)

什么是具身智能&#xff1f; 目前人工智能的进展&#xff0c;在诸多数据源和数据集&#xff08;Youtube、Flickr、Facebook&#xff09;、机器计算能力&#xff08;CPU、GPU、TPU&#xff09;的加持下&#xff0c;已经在CV、NLP上取得了许多任务&#xff08;如目标检测、语义分…

Python学习----闭包和装饰器

情景&#xff1a; 当我们调用函数的时候&#xff0c;函数调用完成之后&#xff0c;函数内定义的变量都会被销毁&#xff0c;但是我们有时候需要保存函数内的这个变量&#xff0c;每次在这个变量的基础上完成一系列的操作&#xff0c;比如&#xff1a;每次在这个变量的基础上和其…

【全网惟一面向软件测试人员的Python基础教程】- 学Python之前要搞懂的道理

全网惟一面向软件测试人员的Python基础教程 起点&#xff1a;《python软件测试实战宝典》介绍 第一章 为什么软件测试人员要学习Python 第二章 学Python之前要搞懂的道理 文章目录全网惟一面向软件测试人员的Python基础教程计算机的本质是什么&#xff1f;什么是编程呢&#x…