随手笔记——3D−2D:PnP

news2024/12/23 16:36:50

随手笔记——3D−2D:PnP

  • 说明
  • 理论
  • 源代码
  • 雅可比矩阵求解

说明

PnP(Perspective-n-Point)是求解3D到2D点对运动的方法。它描述了当知道n个3D空间点及其投影位置时,如何估计相机的位姿。

理论

特征点的3D位置可以由三角化或者RGB-D相机的深度图确定。因此,在双目或RGB-D的视觉里程计中,可以直接使用PnP估计相机运动。而在单目视觉里程计中,必须先进行初始化,然后才能使用 PnP。
PnP 问题有很多种求解方法,例如,用 3 对点估计位姿的 P3P、直接线性变换(DLT)、EPnP(Efficient PnP)、UPnP,等等。此外,还能用非线性优化的方式,构建最小二乘问题并迭代求解,也就是Bundle Adjustment。

源代码

用 OpenCV 提供的 EPnP 求解 PnP 问题,然后通过 g2o 对结果进行优化

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/sparse_optimizer.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/solver.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <sophus/se3.hpp>
#include <chrono>

using namespace std;
using namespace cv;

void find_feature_matches(
  const Mat &img_1, const Mat &img_2,
  std::vector<KeyPoint> &keypoints_1,
  std::vector<KeyPoint> &keypoints_2,
  std::vector<DMatch> &matches);

// 像素坐标转相机归一化坐标
Point2d pixel2cam(const Point2d &p, const Mat &K);

// BA by g2o
typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;
typedef vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d>> VecVector3d;

void bundleAdjustmentG2O(
  const VecVector3d &points_3d,
  const VecVector2d &points_2d,
  const Mat &K,
  Sophus::SE3d &pose
);

// BA by gauss-newton
void bundleAdjustmentGaussNewton(
  const VecVector3d &points_3d,
  const VecVector2d &points_2d,
  const Mat &K,
  Sophus::SE3d &pose
);

int main(int argc, char **argv) {
  if (argc != 5) {
    cout << "usage: pose_estimation_3d2d img1 img2 depth1 depth2" << endl;
    return 1;
  }
  //-- 读取图像
  Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
  Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
  assert(img_1.data && img_2.data && "Can not load images!");

  vector<KeyPoint> keypoints_1, keypoints_2;
  vector<DMatch> matches;
  find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
  cout << "一共找到了" << matches.size() << "组匹配点" << endl;

  // 建立3D点
  Mat d1 = imread(argv[3], CV_LOAD_IMAGE_UNCHANGED);       // 深度图为16位无符号数,单通道图像
  Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
  vector<Point3f> pts_3d;
  vector<Point2f> pts_2d;
  for (DMatch m:matches) {
    ushort d = d1.ptr<unsigned short>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
    if (d == 0)   // bad depth
      continue;
    float dd = d / 5000.0;
    Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
    pts_3d.push_back(Point3f(p1.x * dd, p1.y * dd, dd));
    pts_2d.push_back(keypoints_2[m.trainIdx].pt);
  }

  cout << "3d-2d pairs: " << pts_3d.size() << endl;

  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  Mat r, t;
  solvePnP(pts_3d, pts_2d, K, Mat(), r, t, false); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法
  Mat R;
  cv::Rodrigues(r, R); // r为旋转向量形式,用Rodrigues公式转换为矩阵
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve pnp in opencv cost time: " << time_used.count() << " seconds." << endl;

  cout << "R=" << endl << R << endl;
  cout << "t=" << endl << t << endl;

  VecVector3d pts_3d_eigen;
  VecVector2d pts_2d_eigen;
  for (size_t i = 0; i < pts_3d.size(); ++i) {
    pts_3d_eigen.push_back(Eigen::Vector3d(pts_3d[i].x, pts_3d[i].y, pts_3d[i].z));
    pts_2d_eigen.push_back(Eigen::Vector2d(pts_2d[i].x, pts_2d[i].y));
  }

  cout << "calling bundle adjustment by gauss newton" << endl;
  Sophus::SE3d pose_gn;
  t1 = chrono::steady_clock::now();
  bundleAdjustmentGaussNewton(pts_3d_eigen, pts_2d_eigen, K, pose_gn);
  t2 = chrono::steady_clock::now();
  time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve pnp by gauss newton cost time: " << time_used.count() << " seconds." << endl;

  cout << "calling bundle adjustment by g2o" << endl;
  Sophus::SE3d pose_g2o;
  t1 = chrono::steady_clock::now();
  bundleAdjustmentG2O(pts_3d_eigen, pts_2d_eigen, K, pose_g2o);
  t2 = chrono::steady_clock::now();
  time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve pnp by g2o cost time: " << time_used.count() << " seconds." << endl;
  return 0;
}

void find_feature_matches(const Mat &img_1, const Mat &img_2,
                          std::vector<KeyPoint> &keypoints_1,
                          std::vector<KeyPoint> &keypoints_2,
                          std::vector<DMatch> &matches) {
  //-- 初始化
  Mat descriptors_1, descriptors_2;
  // used in OpenCV3
  Ptr<FeatureDetector> detector = ORB::create();
  Ptr<DescriptorExtractor> descriptor = ORB::create();
  // use this if you are in OpenCV2
  // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
  // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
  Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
  //-- 第一步:检测 Oriented FAST 角点位置
  detector->detect(img_1, keypoints_1);
  detector->detect(img_2, keypoints_2);

  //-- 第二步:根据角点位置计算 BRIEF 描述子
  descriptor->compute(img_1, keypoints_1, descriptors_1);
  descriptor->compute(img_2, keypoints_2, descriptors_2);

  //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
  vector<DMatch> match;
  // BFMatcher matcher ( NORM_HAMMING );
  matcher->match(descriptors_1, descriptors_2, match);

  //-- 第四步:匹配点对筛选
  double min_dist = 10000, max_dist = 0;

  //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
  for (int i = 0; i < descriptors_1.rows; i++) {
    double dist = match[i].distance;
    if (dist < min_dist) min_dist = dist;
    if (dist > max_dist) max_dist = dist;
  }

  printf("-- Max dist : %f \n", max_dist);
  printf("-- Min dist : %f \n", min_dist);

  //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
  for (int i = 0; i < descriptors_1.rows; i++) {
    if (match[i].distance <= max(2 * min_dist, 30.0)) {
      matches.push_back(match[i]);
    }
  }
}

Point2d pixel2cam(const Point2d &p, const Mat &K) {
  return Point2d
    (
      (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
      (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
    );
}

void bundleAdjustmentGaussNewton(
  const VecVector3d &points_3d,
  const VecVector2d &points_2d,
  const Mat &K,
  Sophus::SE3d &pose) {
  typedef Eigen::Matrix<double, 6, 1> Vector6d;
  const int iterations = 10;
  double cost = 0, lastCost = 0;
  double fx = K.at<double>(0, 0);
  double fy = K.at<double>(1, 1);
  double cx = K.at<double>(0, 2);
  double cy = K.at<double>(1, 2);

  for (int iter = 0; iter < iterations; iter++) {
    Eigen::Matrix<double, 6, 6> H = Eigen::Matrix<double, 6, 6>::Zero();
    Vector6d b = Vector6d::Zero();

    cost = 0;
    // compute cost
    for (int i = 0; i < points_3d.size(); i++) {
      Eigen::Vector3d pc = pose * points_3d[i];
      double inv_z = 1.0 / pc[2];
      double inv_z2 = inv_z * inv_z;
      Eigen::Vector2d proj(fx * pc[0] / pc[2] + cx, fy * pc[1] / pc[2] + cy);

      Eigen::Vector2d e = points_2d[i] - proj;

      cost += e.squaredNorm();
      Eigen::Matrix<double, 2, 6> J;
      J << -fx * inv_z,
        0,
        fx * pc[0] * inv_z2,
        fx * pc[0] * pc[1] * inv_z2,
        -fx - fx * pc[0] * pc[0] * inv_z2,
        fx * pc[1] * inv_z,
        0,
        -fy * inv_z,
        fy * pc[1] * inv_z2,
        fy + fy * pc[1] * pc[1] * inv_z2,
        -fy * pc[0] * pc[1] * inv_z2,
        -fy * pc[0] * inv_z;

      H += J.transpose() * J;
      b += -J.transpose() * e;
    }

    Vector6d dx;
    dx = H.ldlt().solve(b);

    if (isnan(dx[0])) {
      cout << "result is nan!" << endl;
      break;
    }

    if (iter > 0 && cost >= lastCost) {
      // cost increase, update is not good
      cout << "cost: " << cost << ", last cost: " << lastCost << endl;
      break;
    }

    // update your estimation
    pose = Sophus::SE3d::exp(dx) * pose;
    lastCost = cost;

    cout << "iteration " << iter << " cost=" << std::setprecision(12) << cost << endl;
    if (dx.norm() < 1e-6) {
      // converge
      break;
    }
  }

  cout << "pose by g-n: \n" << pose.matrix() << endl;
}

/// vertex and edges used in g2o ba
class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d> {
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

  virtual void setToOriginImpl() override {
    _estimate = Sophus::SE3d();
  }

  /// left multiplication on SE3
  virtual void oplusImpl(const double *update) override {
    Eigen::Matrix<double, 6, 1> update_eigen;
    update_eigen << update[0], update[1], update[2], update[3], update[4], update[5];
    _estimate = Sophus::SE3d::exp(update_eigen) * _estimate;
  }

  virtual bool read(istream &in) override {}

  virtual bool write(ostream &out) const override {}
};

class EdgeProjection : public g2o::BaseUnaryEdge<2, Eigen::Vector2d, VertexPose> {
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

  EdgeProjection(const Eigen::Vector3d &pos, const Eigen::Matrix3d &K) : _pos3d(pos), _K(K) {}

  virtual void computeError() override {
    const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
    Sophus::SE3d T = v->estimate();
    Eigen::Vector3d pos_pixel = _K * (T * _pos3d);
    pos_pixel /= pos_pixel[2];
    _error = _measurement - pos_pixel.head<2>();
  }

  virtual void linearizeOplus() override {
    const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
    Sophus::SE3d T = v->estimate();
    Eigen::Vector3d pos_cam = T * _pos3d;
    double fx = _K(0, 0);
    double fy = _K(1, 1);
    double cx = _K(0, 2);
    double cy = _K(1, 2);
    double X = pos_cam[0];
    double Y = pos_cam[1];
    double Z = pos_cam[2];
    double Z2 = Z * Z;
    _jacobianOplusXi
      << -fx / Z, 0, fx * X / Z2, fx * X * Y / Z2, -fx - fx * X * X / Z2, fx * Y / Z,
      0, -fy / Z, fy * Y / (Z * Z), fy + fy * Y * Y / Z2, -fy * X * Y / Z2, -fy * X / Z;
  }

  virtual bool read(istream &in) override {}

  virtual bool write(ostream &out) const override {}

private:
  Eigen::Vector3d _pos3d;
  Eigen::Matrix3d _K;
};

void bundleAdjustmentG2O(
  const VecVector3d &points_3d,
  const VecVector2d &points_2d,
  const Mat &K,
  Sophus::SE3d &pose) {

  // 构建图优化,先设定g2o
  typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 3>> BlockSolverType;  // pose is 6, landmark is 3
  typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
  // 梯度下降方法,可以从GN, LM, DogLeg 中选
  auto solver = new g2o::OptimizationAlgorithmGaussNewton(
    g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
  g2o::SparseOptimizer optimizer;     // 图模型
  optimizer.setAlgorithm(solver);   // 设置求解器
  optimizer.setVerbose(true);       // 打开调试输出

  // vertex
  VertexPose *vertex_pose = new VertexPose(); // camera vertex_pose
  vertex_pose->setId(0);
  vertex_pose->setEstimate(Sophus::SE3d());
  optimizer.addVertex(vertex_pose);

  // K
  Eigen::Matrix3d K_eigen;
  K_eigen <<
          K.at<double>(0, 0), K.at<double>(0, 1), K.at<double>(0, 2),
    K.at<double>(1, 0), K.at<double>(1, 1), K.at<double>(1, 2),
    K.at<double>(2, 0), K.at<double>(2, 1), K.at<double>(2, 2);

  // edges
  int index = 1;
  for (size_t i = 0; i < points_2d.size(); ++i) {
    auto p2d = points_2d[i];
    auto p3d = points_3d[i];
    EdgeProjection *edge = new EdgeProjection(p3d, K_eigen);
    edge->setId(index);
    edge->setVertex(0, vertex_pose);
    edge->setMeasurement(p2d);
    edge->setInformation(Eigen::Matrix2d::Identity());
    optimizer.addEdge(edge);
    index++;
  }

  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  optimizer.setVerbose(true);
  optimizer.initializeOptimization();
  optimizer.optimize(10);
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "optimization costs time: " << time_used.count() << " seconds." << endl;
  cout << "pose estimated by g2o =\n" << vertex_pose->estimate().matrix() << endl;
  pose = vertex_pose->estimate();
}

雅可比矩阵求解

请添加图片描述
请添加图片描述
注:本文内容仅限于学习使用,如有侵权,请联系!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/785986.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

鸿鹄协助管理华为云与炎凰Ichiban

炎凰对华为云的需求 在炎凰日常的开发中&#xff0c;对于服务器上的需求&#xff0c;我们基本都是采用云服务。目前我们主要选择的是华为云&#xff0c;华为云的云主机比较稳定&#xff0c;提供的云主机配置也比较多样&#xff0c;非常适合对于不同场景硬件配置的需求&#xff…

【前端笔记】本地运行cli项目报错ERR_OSSL_EVP_UNSUPPORTED

报错原因 Node版本>17.x&#xff0c;本地npm run 起项目后会发现终端报错&#xff0c;具体有以下2块关键信息&#xff1a; Error: error:0308010C:digital envelope routines::unsupported和 opensslErrorStack: [ error:03000086:digital envelope routines::initializa…

Jmeter配置起来太繁琐?试试RunnerGo

在用jmeter做性能测试时想看完整一点的测试报告&#xff0c;想配置阶梯模式来压测&#xff0c;想配置不同的接口并发这些都需要安装插件并且影响机器性能&#xff0c;想做自动化测试还得放到jenkins&#xff0c;这些配置起来太繁琐。今天给大家推荐一款测试平台RunnerGo&#x…

可解释的 AI:在transformer中可视化注意力

Visualizing Attention in Transformers | Generative AI (medium.com) 一、说明 在本文中&#xff0c;我们将探讨可视化变压器架构核心区别特征的最流行的工具之一&#xff1a;注意力机制。继续阅读以了解有关BertViz的更多信息&#xff0c;以及如何将此注意力可视化工具整合到…

B074-详情富文本 服务上下架 高级查询 分页 查看详情

目录 服务详情修改优化ProductServiceImplProduct.vue 详情数据-富文本-vue-quill-editor使用步骤测试图片的访问方式富文本集成fastDfs 后台服务上下架&#xff08;批量&#xff09;前端开始后端完成ProductControllerProductServiceImplProductMapper 前台展示上架前端开始后…

【雕爷学编程】Arduino动手做(171)---micro:bit 开发板3

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#xff0c;这…

Jmeter 如何并发执行 Python 脚本

目录 1. 前言 2. Python 实现文件上传 3. Jmeter 并发执行 4. 最后 1. 前言 JMeter 是一个开源性能测试工具&#xff0c;它可以帮助我们更轻松地执行性能测试&#xff0c;并使测试结果更加可靠。Python 是一种广泛使用的编程语言&#xff0c;它可以用于开发各种软件和应用…

ResultMap结果集映射

为了解决属性名和字段名不相同的问题 example&#xff1a;MyBatis-CRUD: Mybatis做增删改查 使用resultmap前查询password时为空&#xff0c;因为属性名与字段名不相同 做结果集映射&#xff1a; <?xml version"1.0" encoding"UTF-8" ?> <!…

自己动手写一个编译器

一、概述 本文将参考《自己动手写编译器这本书》&#xff0c;自己写一个编译器&#xff0c;但是因为本人水平有限。文章中比较晦涩的内容&#xff0c;自己也没弄明白。因此&#xff0c;本文仅在实践层跑一遍流程。具体的原理还需要大家自行探索。 TinyC 编译器可将 TinyC 源程序…

JavaScript 判断先后两个数组增加和减少的元素

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的编码爱好者 大家好&#xff0c;我是 DevO…

错误解决:Failed to create Spark client for Spark session

错误解决&#xff1a;Failed to create Spark client for Spark session "Failed to create Spark client for Spark session"的错误通常表示无法为Spark会话创建Spark客户端。这可能是由于以下一些常见问题导致的&#xff1a; Spark配置错误&#xff1a;请检查Spar…

SAMStable-Diffusion集成进化!分割、生成一切!AI绘画新玩法

自SAM「分割一切」模型推出之后&#xff0c;二创潮就开始了&#xff0c;有想法有行动&#xff01;飞桨AI Studio开发者会唱歌的炼丹师就创作出SAM进化版&#xff0c;将SAM、Stable Diffusion集成&#xff0c;实现「分割」、「生成」能力二合一&#xff0c;并部署为应用&#xf…

vue项目入口和个文件之间的关系

vue项目入口和个文件之间的关系 1、代码的执行顺序和引入关系 1、代码的执行顺序和引入关系

新星计划打卡学习:VUE3引入element-plus

目录 1、安装element-plus 2、安装按需导入插件 3、修改配置文件 4、添加页面内容 5、保存并重启项目 1、安装element-plus 官网说要想使用element-plus需要先进行安装&#xff0c;并给出了三种安装方式&#xff0c;我选择了第三种。 报错了&#xff1a; 解决的办法&…

PostgreSQL 设置时区,时间/日期函数汇总

文章目录 前言查看时区修改时区时间/日期操作符和函数时间/日期操作符日期/时间函数&#xff1a;extract&#xff0c;date_part函数支持的field 数据类型格式化函数用于日期/时间格式化的模式&#xff1a; 扩展 前言 本文基于 PostgreSQL 12.6 版本&#xff0c;不同版本的函数…

人才公寓水电表改造解决方案

随着社会经济的不断发展&#xff0c;人才公寓作为吸引和留住人才的重要配套设施&#xff0c;其水电表改造问题越来越受到人们的关注。本文将从以下几个方面探讨人才公寓水电表改造解决方案。 一、现状分析 目前&#xff0c;人才公寓的水电表普遍存在以下几个问题&#xff1a; …

Jenkins从配置到实战(二) - Jenkins如何在多台机器上自动化构建

前言 jenkins除了支持在本机上进行项目构建&#xff0c;还可以将构建任务分发到其他远程服务器上去执行&#xff0c;可以实现在不同平台和架构的机器上来完成项目的自动化构建任务&#xff0c;也能减轻jenkins服务器的压力。本文章就主要介绍下此流程。 准备工作 准备两台机…

2.02 分类功能实现后台实现

三级分类效果图&#xff1a; 一 实现一级分类查询 步骤1&#xff1a;使用逆向工程生成创建实体类和对应的mapper 实体类&#xff1a;Categorymapper: CategoryMapper和CategoryMapper.xml步骤2&#xff1a; import com.one.pojo.Category; import java.util.List; public int…

视频讲解Codeforces Round 887 (Div. 2)(A--C)

文章目录 A. Desorting1、板书2、代码 B. Fibonaccharsis1、板书2、代码 C. Ntarsis Set1、板书2、代码 视频讲解Codeforces Round 887 (Div. 2)&#xff08;A–C&#xff09; A. Desorting 1、板书 2、代码 #include<bits/stdc.h> #define endl \n #define INF 0x3f…

Linux6.13 Docker LNMP项目搭建

文章目录 计算机系统5G云计算第四章 LINUX Docker LNMP项目搭建一、项目环境1.环境描述2.容器ip地址规划3.任务需求 二、部署过程1.部署构建 nginx 镜像2.部署构建 mysql 镜像3.部署构建 php 镜像4.验证测试 计算机系统 5G云计算 第四章 LINUX Docker LNMP项目搭建 一、项目…