手撕自定义类型:结构体,枚举,联合——【C语言】

news2024/12/24 3:57:50

 在开始学习之前我们先来欣赏一下五岳之一华山的风景,来营造一个好心情,只有一个好心情我们才能更好的学习

目录

结构体

1 结构体的声明

1.1 结构的基础知识

1.2 结构的声明

1.3 特殊的声明

1.4 结构的自引用

1.5 结构体变量的定义和初始化 

1.6 结构体内存对齐(重点)

1.7 修改默认对齐数 

1.8 结构体传参

 2. 位段

2.1 什么是位段

2.2 位段的内存分配

2.3 位段的跨平台问题

3. 枚举

3.1 枚举类型的定义

3.2 枚举的优点

 3.3 枚举的使用

 4. 联合(共用体)

4. 联合(共用体)

4.2 联合的特点

4.3 联合大小的计算   


结构体

1 结构体的声明

1.1 结构的基础知识

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

1.2 结构的声明

struct tag
{
 member-list;
}variable-list;

例如描述一个学生:

struct Stu
{
 char name[20];//名字
 int age;//年龄
 char sex[5];//性别
 char id[20];//学号
}; //分号不能丢

1.3 特殊的声明

在声明结构的时候,可以不完全的声明。比如:

//匿名结构体类型
struct
{
 int a;
 char b;
 float c;
}x;
struct
{
 int a;
 char b;
 float c;
}a[20], *p;

 上面的两个结构在声明的时候省略掉了结构体标签(tag)。那么问题来了?

//在上面代码的基础上,下面的代码合法吗?

p = &x;

警告: 编译器会把上面的两个声明当成完全不同的两个类型。 所以是非法的。

1.4 结构的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?

//代码1
struct Node
{
 int data;
 struct Node next;
};
//可行否?
如果可以,那sizeof(struct Node)是多少?

答案是不可行的,因为在结构体变量中自引用会出现无限套娃的情景。在求struct Node大小时中包含自身,但是自身的大小又是不知道的,所以这总写法是错误的!

正确写法为:

//代码2
struct Node
{
 int data;
 struct Node* next;
};

下面还有一个问题:

在使用typedef重命名时,再自引用指针可以吗?代码如下:

typedef struct
{
 int data;
 Node* next;
}Node;
//这样写代码,可行否?

答案是不行的,因为代码的执行顺序都是从上往下的,typedef重命名在最后才赋予新名字,在结构体中就此运用就是不对的!具体解决方法如下:

typedef struct Node
{
 int data;
 struct Node* next;
}Node;

1.5 结构体变量的定义和初始化 

有了结构体类型,那如何定义变量,其实很简单。

struct Point
{
 int x;
 int y;
}p1; //声明类型的同时定义变量p1(第一种)
struct Point p2; //定义结构体变量p2(第二种)
//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};(第三种)
struct Stu        //类型声明
{
 char name[15];//名字
 int age;      //年龄
};
struct Stu s = {"zhangsan", 20};//初始化
struct Node
{
 int data;
 struct Point p;
 struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化(第四种)
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化(第五种)

以上五种方法全部都已代码的形式为大家展示清楚了。 

1.6 结构体内存对齐(重点)

我们已经掌握了结构体的基本使用了。 现在我们深入讨论一个问题:计算结构体的大小。

这也是一个特别热门的考点: 结构体内存对齐!!!

我们先从一个程序说起:

struct S1
{
	char c1;
	int i;
	char c2;
};
int main(void)
{
	printf("%d\n", sizeof(struct S1));
	return 0;
}

struct S1的大小应该为多少呢?我们刚开始一般会觉得是6

 那为什么结果是12呢?我们先通过一个宏offsetof(计算结构体成员相较于结构体起始位置的偏移量)。这个宏在头文件#include<stddef.h>中。

#include<stddef.h>
struct S1
{
	char c1;
	int i;
	char c2;
};
int main(void)
{
	//printf("%d\n", sizeof(struct S1));
	printf("%d\n", offsetof(struct S1, c1));
	printf("%d\n", offsetof(struct S1, i)); 
	printf("%d\n", offsetof(struct S1, c2));
	return 0;
}

  那结构体内容都存满了,为什么还要继续浪费这三个字节呢?? 

我们来学习一下:

如何计算?

首先得掌握结构体的对齐规则:

1. 第一个成员在与结构体变量偏移量为0的地址处。

2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。 VS中默认的值为8 Linux中没有默认对齐数,对齐数就是成员自身的大小

3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。

4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整 体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

学习了以上的内存对齐规则,我们应该明白了上面出现了所以疑问,那现在我们在练习一道题:


#include<stddef.h>
struct S1
{
	char c1;
	char c2;
	int i;
};
int main(void)
{
	printf("%d\n", sizeof(struct S1));
	return 0;
}

我们对以上结构体进行具体化分析: 那结果是不是8呢,我们来验证一下: 没错,我相信大家已经基本了解和掌握了结构体内存对齐的。那我们为什么要内存对齐呢?

原因:

1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访 问。

总体来说: 结构体的内存对齐是拿空间来换取时间的做法。

 那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在一起。

//例如:
struct S1
{
 char c1;
 int i;
 char c2;
};
struct S2
{
 char c1;
 char c2;
 int i;
};

S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。

1.7 修改默认对齐数 

之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
    //输出的结果是什么?
    printf("%d\n", sizeof(struct S1));
  printf("%d\n", sizeof(struct S2));
    return 0;
}

当我们设置对齐数为1时,相同的结构体的内存大小从12变成6。

1.8 结构体传参

struct S
{
 int data[1000];
 int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
 printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
 printf("%d\n", ps->num);
}
int main()
{
 print1(s);  //传结构体
 print2(&s); //传地址
 return 0;
}

 上面的 print1 和 print2 函数哪个好些?

答案是:首选print2函数。 原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。

如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的 下降。

 2. 位段

2.1 什么是位段

位段的声明和结构是类似的,有两个不同:

1.位段的成员必须是 int、unsigned int 或signed int 。

2.位段的成员名后边有一个冒号和一个数字。

struct A
{
 int _a:2;
 int _b:5;
 int _c:10;
 int _d:30;
};

A就是一个位段类型。 那位段A的大小是多少? 

struct A
{
	int _a : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};
int main()
{
	printf("%d\n", sizeof(struct A));
		return 0;
}

 带着刚才的疑问,我们接着往下看。

2.2 位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

举个例子: 

//一个例子
struct S
{
 char a:3;
 char b:4;
 char c:5;
 char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?

接下来让我们分析一下:

 我们可以一目了然的看出位段在vs中的内存分配。

2.3 位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。

2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机 器会出问题。

3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是 舍弃剩余的位还是利用,这是不确定的。

总结: 跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

3. 枚举

枚举顾名思义就是一一列举。 把可能的取值一一列举。 比如我们现实生活中:性别有:男、女、保密,也可以一一列举。 月份有12个月,也可以一一列举。

3.1 枚举类型的定义

enum Day//星期
{
 Mon,
 Tues,
 Wed,
 Thur,
 Fri,
 Sat,
 Sun
};
enum Sex//性别
{
 MALE,
 FEMALE,
 SECRET
};
enum Color//颜色
{
 RED,
 GREEN,
 BLUE
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。 {}中的内容是枚举类型的可能取值,也叫 枚举常量 。

这些可能取值都是有值的,默认从0开始,依次递增1,当然在声明枚举类型的时候也可以赋初值。

 例如:

enum Color//颜色
{
 RED=1,
 GREEN,
 BLUE=4
};
//RED = 1;GREEN = 2; BLUE = 4;

3.2 枚举的优点

我们可以使用 #define 定义常量,为什么非要使用枚举?

枚举的优点: 1. 增加代码的可读性和可维护性 2. 和#define定义的标识符比较枚举有类型检查,更加严谨。 3. 便于调试 4. 使用方便,一次可以定义多个常量 

 3.3 枚举的使用

enum Color//颜色
{
 RED=1,
 GREEN=2,
 BLUE=4
};
enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。
clr = 5;               //ok??

 4. 联合(共用体)

4. 联合(共用体)

联合也是一种特殊的自定义类型 这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。 比如:

union Un
{
	char c;
	int i;
};

int main()
{
	union Un un = { 0 };
	printf("%d\n", sizeof(un));
	printf("%p\n", &un);
	printf("%p\n", &(un.i));
	printf("%p\n", &(un.c));

	return 0;
}

无论访问联合体的哪一块位置,地址都是同一个,这说明联合体中的变量是共用同一块内存空间的,不会针对一个变量开辟一个,而且内存大小为4,为联合体中最大的。

所以联合体中在同一时间只能使用里面的一个元素,要不然就会进行干扰。

我们可以使用一段代码证明一下:

union Un
{
	char c;
	int i;
};
int main()
{
	union Un un = { 0 };
	un.i = 0x11223344;
	un.c = 0x55;

	return 0;
}

4.2 联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联 合至少得有能力保存最大的那个成员)。 

4.3 联合大小的计算   

联合的大小至少是最大成员的大小。

当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。 

我们来练习一下: 

union Un1
{
 char c[5];
 int i;
};
//下面输出的结果是什么?
printf("%d\n", sizeof(union Un1));

 结果如何呢?


以上就是所有内容,谢谢观看!!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/761251.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Go语言之重要数组类型切片(slice)make,append函数

切片是一个动态数组&#xff0c;因为数组的长度是固定的&#xff0c;所以操作起来很不方便&#xff0c;比如一个names数组&#xff0c;我想增加一个学生姓名都没有办法&#xff0c;十分不灵活。所以在开发中数组并不常用&#xff0c;切片类型才是大量使用的。 切片基本操作 切片…

Linux系统文件编程及文件读、写操作

Linux 系统编程Day01 文章目录 Linux 系统编程Day011.文件编程概述1.1 文件的打开及创建1.1.1 参数说明1.1.2 文件写入操作示例1.1.3 文件的权限 2.文件操作2.1 写入文件2.2 文件读取操作2.3 文件的光标移动操作 3.文件操作原理简述3.1文件描述符3.2 Linux文件操作流程 1.文件编…

【数据结构】二叉树的前中后序遍历(C语言)

文章目录 什么是二叉树树相关的概念树的表示形式特殊的二叉树如何创造出一棵二叉树二叉树的遍历先序遍历(前序遍历)中序遍历后序遍历 总结 什么是二叉树 [二叉树] 顾名思义就是有两个分支节点的树&#xff0c;不仅如此&#xff0c;除了叶子外的所有节点都具有两个分支节点&…

单个电源模块给多个负载使用,并且电源后还经过了磁珠-二级电源直流压降仿真

单个电源模块给多个负载使用,并且电源后还经过了磁珠-二级电源直流压降仿真 下面介绍单个电源模块给多个负载使用,并且电源后还经过了磁珠-二级电源直流压降仿真,常见于二级压降仿真,以下图为例

备战秋招 | 笔试强训5

目录 一、选择题 二、编程题 三、选择题题解 四、编程题题解 一、选择题 1、在上下文和头文件均正常情况下&#xff0c;以下程序的输出结果是&#xff08;&#xff09; int x 1; do {printf("%2d\n",x); }while(x--); A. 1 B. 无任何输出 C. 2 D. 陷入死循环 …

三种智能算法优化PID参数软件,MATLABAPP开发

今天的主题是&#xff1a;三种智能算法优化常见传递函数的PID参数&#xff0c;采用MATLAB APP Designer 开发。提供代码源程序&#xff0c;可以自行修改源代码&#xff08;不是封装软件&#xff09; 这个软件基本涵盖了所有的传递函数类型&#xff0c;传递函数的参数简单易改。…

【Java反射机制详解】—— 每天一点小知识

&#x1f4a7; J a v a 反射机制详解 \color{#FF1493}{Java反射机制详解} Java反射机制详解&#x1f4a7; &#x1f337; 仰望天空&#xff0c;妳我亦是行人.✨ &#x1f984; 个人主页——微风撞见云的博客&#x1f390; &#x1f433; 《数据结构与算法》专栏的文章…

pytest 参数化进阶

目录 前言&#xff1a; 语法 参数化误区 实践 简要回顾 前言&#xff1a; pytest是一个功能强大的Python测试框架&#xff0c;它提供了参数化功能&#xff0c;可以帮助简化测试用例的编写和管理。 语法 本文就赶紧聊一聊 pytest 的参数化是怎么玩的。 pytest.mark.par…

week27

这周是磨难的一周不知道NT装了多少次系统&#xff0c;删除了多少数据好消息是把BIOS和ubuntu安装地很熟练了&#xff0c;而且经过爱上了心仪的Ubuntu23.04&#xff0c;就是她了坏消息是一个学期做的笔记全都没了&#xff0c;以后不好回忆了&#xff0c;好消息是不用考试了&…

总结929

今日做了一篇阅读题&#xff0c;差点全军覆没&#xff0c;通过这篇阅读&#xff0c;主要说明了两大问题&#xff0c;一个是单词&#xff0c;背的还不够牢固&#xff0c;其二&#xff0c;语法功底还不够扎实。但说实话&#xff0c;在语法方面&#xff0c;还是下了一番功夫&#…

linux 内网批量快速传输大文件 nc

使用nc工具 传输内网宽带拉满先运行接收端 开始监听使用 ansible 拷贝脚本到其它接收端服务器批量运行接收端脚本查看nc是否运行运行发送端运行发送端脚本开始传输文件 传输内网宽带拉满 先运行接收端 开始监听 接收端脚本 re.sh #!/bin/bash #Revision: 1.0 #Author:…

动态规划(一) —— 从背包系列问题看DP

前言 动态规划可以算是算法初学者的噩梦哈哈&#xff0c;这段时间荔枝在持续学习Java后端的同时也没有忘记刷题嘿嘿嘿&#xff0c;总算把代码随想录上给出的有关动态规划的题目刷完了。接下来的几篇文章荔枝将会对于刷过的动态规划问题做出总结并给出相应的个人体会和理解。在本…

compose之沉浸式(侵入式)状态栏(隐藏状态栏)

沉浸式(侵入式)状态栏 效果图&#xff1a; 1、代码加入&#xff1a;WindowCompat.setDecorFitsSystemWindows(window, false) ComposeTestTheme {WindowCompat.setDecorFitsSystemWindows(window, false)Greeting("Android")} 2、沉浸式(侵入式)主题&#xff1a; …

消息推送(websocket)集群化解决方案

目录 需求分析解决方案实现步骤架构图配置websocket请求地址配置websocket连接前置和连接关闭监听配置websocket处理程序配置redis交换机配置redis订阅监听配置redis发布监听需求分析 及时信息传递:消息推送功能能够确保网站向用户发送及时的重要信息,包括新闻更新、促销活动…

消息队列——rabbitmq的不同工作模式

目录 Work queues 工作队列模式 Pub/Sub 订阅模式 Routing路由模式 Topics通配符模式 工作模式总结 Work queues 工作队列模式 C1和C2属于竞争关系&#xff0c;一个消息只有一个消费者可以取到。 代码部分只需要用两个消费者进程监听同一个队里即可。 两个消费者呈现竞争关…

Redis进阶底层原理-主从复制

Redis的主从节点都会记录对方的信息&#xff0c;核心还包括ReplicationID 和 offset &#xff0c; ReplicationID &#xff1a; 主从节点实例的ID &#xff0c;redis内部就是通过这个id去识别主从节点。offset&#xff1a;数据同步偏移量&#xff0c;也就是从节点每次从主节点同…

3.6 Bootstrap 导航元素

文章目录 Bootstrap 导航元素表格导航或标签胶囊式的导航菜单基本的胶囊式导航菜单垂直的胶囊式导航菜单 两端对齐的导航禁用链接下拉菜单带有下拉菜单的标签带有下拉菜单的胶囊标签页与胶囊式标签页 Bootstrap 导航元素 本文将讲解 Bootstrap 提供的用于定义导航元素的一些选项…

使用thrift编写C++服务器、客户端

在上一节《Linux 下编译 thrift》中&#xff0c;我们成功编译出了thrift的库文件&#xff0c;本节我们来编写thrift的C服务器&#xff0c;客户端。 官网 https://thrift.apache.org/tutorial/cpp.html 有thrift的C例子。在我们之前下载下来的thrift 源码根目录的tutorial/cpp目…

MySQL高级管理

目录 一、指定主键的一种方式 1.1高级操作 1.2数据表高级操作,克隆表 1.2.1 克隆表名 1.2.2备份表内容 1.3复制表 1.4删除指令 方法一&#xff1a; 方法二&#xff1a; 删除速度 二、创建临时表 三、MySQL中6种常见的约束 3.1创建主表 3.2创建从表 3.3为主表test01添加…

[Docker异常篇]解决Linux[文件异常]导致开机Docker服务无法启动

文章目录 一&#xff1a;场景复现二&#xff1a;解决思路2.1&#xff1a; 对比其他节点docker配置2.2&#xff1a;试着修改为正常节点配置2.2&#xff1a;根据上面异常显示&#xff0c;不一定是配置不对&#xff0c;可能是文件系统有损坏 三&#xff1a;解决 -> 执行命令 mo…