文章目录
- 16. 最接近的三数之和
- 排序 + 双指针
- 1911. 最大子序列交替和
- 解法——动态规划
- 2544. 交替数字和(简单模拟)
- 931. 下降路径最小和(线性DP)
- 979. 在二叉树中分配硬币⭐⭐⭐⭐⭐(dfs)
- 算法分析
- 补充:贡献法相关题目练习
- 891. 子序列宽度之和
- 18. 四数之和(排序 + 双指针 + 去重 + long)
- 834. 树中距离之和⭐⭐⭐⭐⭐(两次 dfs)
- 思路——冷静分析,列出式子
- 算法分析⭐⭐⭐⭐⭐
- 补充:相关题目列表(换根DP)🐂!
16. 最接近的三数之和
16. 最接近的三数之和
排序 + 双指针
class Solution {
public int threeSumClosest(int[] nums, int target) {
int n = nums.length, mn = Integer.MAX_VALUE, ans = 0;
Arrays.sort(nums);
for (int i = 0; i < n - 2; ++i) {
for (int l = i + 1, r = n - 1; l < r; ) {
int sum = nums[i] + nums[l] + nums[r];
int diff = Math.abs(sum - target);
if (diff < mn) {
mn = diff;
ans = sum;
}
if (sum < target) ++l;
else if (sum > target) --r;
else return ans;
}
}
return ans;
}
}
时间复杂度控制在 O ( n 2 ) O(n^2) O(n2)
1911. 最大子序列交替和
1911. 最大子序列交替和
解法——动态规划
- dp[i][0]和dp[i][1]分别表示以i为结果做加法和做减法的最大值
- 递推公式见代码
- dp数组初始化dp[0]即可
- 从前向后遍历
class Solution {
public long maxAlternatingSum(int[] nums) {
int n = nums.length;
long[][] dp = new long[n][2];
dp[0][0] = nums[0];
for (int i = 1; i < n; ++i) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + nums[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - nums[i]);
}
return Math.max(dp[n - 1][0], dp[n - 1][1]);
}
}
这题很类似 122. 买卖股票的最佳时机 II
,只不过可以在没有股票的情况下先卖一个。
这种思想写出来的代码如下:
class Solution {
public long maxAlternatingSum(int[] prices) {
int n = prices.length;
long sell = prices[0], buy = 0;
for (int i = 1; i < n; ++i) {
long newSell = Math.max(sell, buy + prices[i]);
buy = Math.max(buy, sell - prices[i]);
sell = newSell;
}
return sell;
}
}
2544. 交替数字和(简单模拟)
https://leetcode.cn/problems/alternating-digit-sum/
简单模拟即可。
class Solution {
public int alternateDigitSum(int n) {
int sign = 1, ans = 0;
while (n != 0) {
ans += sign * (n % 10);
n /= 10;
sign *= -1;
}
return -sign * ans;
}
}
931. 下降路径最小和(线性DP)
https://leetcode.cn/problems/minimum-falling-path-sum/
class Solution {
public int minFallingPathSum(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
int[][] dp = new int[m][n];
dp[0] = Arrays.copyOf(matrix[0], n);
for (int i = 1; i < m; ++i) {
for (int j = 0; j < n; ++j) {
dp[i][j] = dp[i - 1][j];
if (j - 1 >= 0) dp[i][j] = Math.min(dp[i][j], dp[i - 1][j - 1]);
if (j + 1 < m) dp[i][j] = Math.min(dp[i][j], dp[i - 1][j + 1]);
dp[i][j] += matrix[i][j];
}
}
return Arrays.stream(dp[m - 1]).min().getAsInt();
}
}
979. 在二叉树中分配硬币⭐⭐⭐⭐⭐(dfs)
https://leetcode.cn/problems/distribute-coins-in-binary-tree/
提示:
1<= N <= 100
0 <= node.val <= N
没有靠自己第一眼就做出来!
dfs (root) 的返回值表示 root 的父节点需要从 root 节点拿走几个金币才能让 root 处的金币数量为 1。
https://leetcode.cn/problems/distribute-coins-in-binary-tree/solutions/2339545/zai-er-cha-shu-zhong-fen-pei-ying-bi-by-e4poq/
class Solution {
int ans = 0;
public int distributeCoins(TreeNode root) {
dfs(root);
return ans;
}
// 返回值是root的父节点需要从root拿走几个金币才能让root是1
public int dfs(TreeNode root) {
int moveLeft = 0, moveRight = 0;
if (root == null) return 0;
if (root.left != null) moveLeft = dfs(root.left);
if (root.right != null) moveRight = dfs(root.right);
ans += Math.abs(moveLeft) + Math.abs(moveRight);
return moveLeft + moveRight + root.val - 1;
}
}
算法分析
路径是由边组成的,所有路径长度之和,等同于把「每条边出现在多少条路径中」相加。这种技巧叫做贡献法。
补充:贡献法相关题目练习
更多题目可见:【算法】贡献法相关题目练习
891. 子序列宽度之和
https://leetcode.cn/problems/sum-of-subsequence-widths/
思路:
考虑每个元素会作为几个子序列的最小值,又会作为几个子序列的最大值。
class Solution {
public int sumSubseqWidths(int[] nums) {
final int MOD = (int)1e9 + 7;
Arrays.sort(nums); // 看到是序列,和顺序无关,可以排序!
int n = nums.length;
// 预处理出 2 的幂次
int[] pow2 = new int[n];
pow2[0] = 1;
for (int i = 1; i < n; ++i) {
pow2[i] = pow2[i - 1] * 2 % MOD;
}
long ans = 0;
for (int i = 0; i < n; ++i) {
// 计算 nums[i] 作为最大值的贡献减去作为最小值的贡献
ans = (ans + (long)(pow2[i] - pow2[n - 1 - i]) * nums[i]) % MOD;
}
return (int)(ans + MOD) % MOD;
}
}
18. 四数之和(排序 + 双指针 + 去重 + long)
18. 四数之和
排序 + 双指针 + 去重 + long
class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
List<List<Integer>> ans = new ArrayList();
Arrays.sort(nums);
int n = nums.length;
for (int i = 0; i < n - 3; ++i) {
if (i > 0 && nums[i] == nums[i - 1]) continue;
for (int j = i + 1; j < n - 2; ++j) {
if (j > i + 1 && nums[j] == nums[j - 1]) continue;
long t = (long)target - nums[i] - nums[j];
for (int l = j + 1, r = n - 1; l < r; ) {
if (l > j + 1 && nums[l] == nums[l - 1]) {
++l;
continue;
}
long x = nums[l] + nums[r];
if (x < t) l++;
else if (x > t) r--;
else ans.add(List.of(nums[i], nums[j], nums[l++], nums[r--]));
}
}
}
return ans;
}
}
834. 树中距离之和⭐⭐⭐⭐⭐(两次 dfs)
834. 树中距离之和
思路——冷静分析,列出式子
https://leetcode.cn/problems/sum-of-distances-in-tree/solutions/103325/c-liang-ci-dfsde-dao-da-an-by-congwang357-2/
将问题拆分:对于两个相邻节点A和B,将树拆分为两个子树,根节点分别为A和B,A节点到其他所有节点的距离和 ans(A)
= A子树中所有节点到A节点的距离和sum(A)
+ B子树中所有节点到B节点的距离和sum(B)
+ B子树的大小cnt(B)
;
同理,ans(B) = sum(B) + sum(A) + cnt(A);
由此我们得到: ans(A) = sum(A) + sum(B) + cnt(B); ans(B) = sum(B) + sum(A) + cnt(A);
则,两个相邻接点的解之间的关系为:ans(A)
= ans(B) - cnt(A) + cnt(B) = ans(B) - cnt(A) + (N - cnt(A))
;
因此,对于根节点root的任意子节点child,ans(child) = ans(root) - cnt(child) + N - cnt(child);
class Solution {
List<Integer>[] g;
int[] ans, size; // size是各个节点作为根节点的子树大小
int n;
public int[] sumOfDistancesInTree(int n, int[][] edges) {
g = new ArrayList[n];
Arrays.setAll(g, e -> new ArrayList<Integer>());
for (int[] edge: edges) {
int x = edge[0], y = edge[1];
g[x].add(y);
g[y].add(x);
}
this.n = n;
ans = new int[n];
size = new int[n];
Arrays.fill(size, 1);
dfs(0, -1, 0);
reroot(0, -1);
return ans;
}
// 求ans[0]和各个size[i]
void dfs(int x, int fa, int depth) {
ans[0] += depth; // depth 是 0 到 x 的距离
for (int y: g[x]) {
if (y != fa) {
dfs(y, x, depth + 1);
size[x] += size[y]; // 累加 x 的儿子 y 的子树大小
}
}
}
// 求答案
void reroot(int x, int fa) {
for (int y: g[x]) {
if (y != fa) {
ans[y] = ans[x] + n - 2 * size[y];
reroot(y, x);
}
}
}
}
算法分析⭐⭐⭐⭐⭐
https://leetcode.cn/problems/sum-of-distances-in-tree/solutions/2345592/tu-jie-yi-zhang-tu-miao-dong-huan-gen-dp-6bgb/
我们得到了重要公式:
a
n
s
[
y
]
=
a
n
s
[
x
]
+
n
−
2
∗
s
i
z
e
[
y
]
ans[y] = ans[x] + n - 2 * size[y]
ans[y]=ans[x]+n−2∗size[y]
如何理解?
y 和以 y为根的子树的距离相比 x 与 以 y为根的子树的距离 少了 cnt[y]
除了 以 y为根的子树,剩下的节点数量是 n - cnt[y],这些和 y 的距离相比 和 x 的距离多了 n - cnt[y]
因此:ans[y] = ans[x] + n - 2 * size[y]
补充:相关题目列表(换根DP)🐂!
更多题目参见:【算法】换根DP