【2023 年第二届钉钉杯大学生大数据挑战赛初赛】 初赛 A:智能手机用户监测数据分析 问题一Python代码分析

news2025/1/12 8:43:04

2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题一Python代码分析

在这里插入图片描述

1 题目

2023 年第二届钉钉杯大学生大数据挑战赛初赛题目 初赛 A:智能手机用户监测数据分析

一、问题背景

近年来,随着智能手机的产生,发展到爆炸式的普及增长,不仅推动了中 国智能手机市场的发展和扩大,还快速的促进手机软件的开发。近年中国智能手 机市场品牌竞争进一步加剧,中国超越美国成为全球第一大智能手机市场。手机 软件日新月异,让人们更舒适的使用手机,为人们的生活带来很多乐趣,也产生 了新的群体“低头一族”。手机软件进入人们的生活,游戏、购物、社交、资讯、理财等等APP吸引着、方便着现代社会的人们,让手机成为人们出门的必备物 品。该数据来自某公司某年连续30天的4万多智能手机用户的监测数据,已经做 了脱敏和数据变换处理。每天的数据为1个txt文件,共10列,记录了每个用户(以uid为唯一标识)每天使用各款APP(以appid为唯一标识)的起始时间,使 用时长,上下流量等。具体说明见表1。此外,有一个辅助表格, app_class.csv,共两列。第一列是appid,给出4000多个常用APP所属类别(app_class),比如:社交类、影视类、教育类等,用英文字母a-t表示,共20个常 用得所属类别,其余APP不常用,所属类别未知。

表 1

变量编号变量名释义
1uid用户的id
2appidAPP的id(与app_class文件中的第一列对应)
3app_typeAPP类型:系统自带、用户安装
4start_day使用起始天,取值1-30(注:第一天数据的头两行的使用起始天取 值为0,说明是在这一天的前一天开始使用的)
5start_time使用起始时间
6end_day使用结束天
7end_time使用结束时间
8duration使用时长(秒)
9up_flow上行流量
10down_flow下行流量

二、解决问题

  1. 聚类分析

(一)根据用户常用所属的20类APP的数据对用户进行聚类,要求至少给出三种不同的聚 类算法进行比较,选择合理的聚类数量K值,并分析聚类结果。

(二)根据聚类结果对不同类别的用户画像,并且分析不同群体用户的特征。(用户画 像定义:根据用户的属性,偏好,行为习惯等信息对用户打标签,用以描述不同群体的用户 行为,从而针对不同群体的用户推荐不同所属类别的APP产品。)

  1. APP使用情况预测分析:要研究的问题是通过用户的APP使用记录预测用户未来是否使 用APP(分类问题)及使用时长(回归问题)

(一)对用户使用APP的情况进行预测,根据用户第1~11天的a类APP的使用情况,来预 测用户在第12~21天是否会使用该类APP。给出预测结果和真实结果相比的准确率。(注:测 试集不能参与到训练和验证中,否则作违规处理)

(二)对用户使用APP的情况进行预测,根据用户第1~11天的a类APP的使用情况,来预测 第12~21天用户使用a类APP的有效日均使用时长。评价指标选用NMSE。
M M S E = ∑ ( y i − y i ^ ) ∑ ( y i − y i ‾ ) MMSE = \sqrt{\frac{\sum(y_i-\hat{y_i})}{\sum(y_i-\overline{y_i})}} MMSE=(yiyi)(yiyi^)

式中, y i y_i yi表示使用时长的实际值; y i ^ \hat{y_i} yi^表示使用时长的预测值; y i ‾ \overline{y_i} yi表示所有用户的实际使用时长的平均值。给出预测结果和真实结果之间的NMSE。(注:测试集不能参与到训练和验证中, 否则作违规处理)

2 建模思路

第一题:

  1. 数据预处理:对用户常用的20类APP数据,进行数据清洗和特征提取。可以使用PCA、LDA算法进行降维,减小计算复杂度。

  2. 聚类算法:
    a. K-means: 进行数据聚类时,选择不同的K值进行多次试验,选取最优的聚类结果。可以使用轮廓系数、Calinski-Harabaz指数等评价指标进行比较和选择。
    b. DBSCAN: 利用密度对数据点进行聚类,不需要预先指定聚类的数量。使用基于密度的聚类算法时,可以通过调整半径参数和密度参数来得到不同聚类效果。
    c. 层次聚类:可分为自顶向下和自底向上两种方式。通过迭代计算每个数据点之间的相似度,将数据点逐渐合并,最后得到聚类结果。

    d.改进的聚类算法

    e. 深度聚类算法

  3. 聚类结果分析:选择最优的聚类结果后,对不同类别用户进行画像。分析每个类别的用户行为特征(如使用时段、使用频率、使用时长、使用偏好等),根据用户画像为用户打标签。根据用户标签,推荐不同所属类别的APP产品。

第二题:

  1. 数据预处理:对用户APP使用记录数据,进行数据清洗和特征提取,例如统计用户每种APP的使用次数、时长等特征量。
  2. 分类问题预测:建立分类模型,利用用户1~11天的APP使用记录,采用特征工程对数据进行处理,并选择合适的分类算法进行训练和测试,如决策树、随机森林、支持向量机、改进的机器学习分类算法。最后使用测试集进行模型验证,评价模型的准确率。
  3. 回归问题预测:建立回归模型,利用用户1~11天的APP使用记录,采用特征工程对数据进行处理,并选择合适的回归算法进行训练和测试,如线性回归、决策树回归、神经网络回归。使用测试集进行模型验证,评价模型的准确性,可以使用NMSE评价指标。

3 问题一实现代码

3.1 数据清洗

导入包

import pandas as pd
from sklearn.cluster import Birch
from sklearn.cluster import AgglomerativeClustering
from sklearn.decomposition import PCA
import time
from sklearn import metrics
import os
from sklearn.cluster import MeanShift
from tqdm import tqdm
import numpy as np
import warnings
warnings.filterwarnings("ignore")
tqdm.pandas()

合并数据

# 合并数据
folder_path = '初赛数据集/'
dfs = []
for filename in os.listdir(folder_path):
    if filename.endswith('.txt'):
        csv_path = os.path.join(folder_path, filename)
        tempdf = pd.read_csv(csv_path)
        dfs.append(tempdf)
df = pd.concat(dfs,axis=0)
df.shape

数据清洗:

  1. 对于start_day为0的行,将其start_day修改为1,表示第一天开始使用。
  2. 对于时间相关的特征(start_time、end_day、end_time),将其转换为datetime类型,并计算出每次使用的具体时间和日期,以及使用时长(分钟)、上行流量(MB)、下行流量(MB)。
  3. 剔除duration、up_flow和down_flow为0的行,因为这说明该用户对该APP只是打开了一下,并没有真正地使用。
  4. 根据使用时长的分布图,剔除使用时长和流量明显异常的行,如使用时长过于短(小于10秒)、流量过大/过小的行。
import pandas as pd
import datetime
import matplotlib.pyplot as plt

# 数据清洗
df.loc[df['start_day'] == 0, 'start_day'] = 1  # 将使用起始天为0的行,修改为1
df['start_time'] = pd.to_datetime(df['start_time'])  # 转换为datetime类型
df['end_time'] = pd.to_datetime(df['end_time'])  # 转换为datetime类型
df['usage_time'] = (df['end_time'] - df['start_time']) / pd.Timedelta(minutes=1)  # 使用时长(分钟)
df['up_flow_mb'] = df['up_flow'] / 1024 / 1024  # 上行流量(MB)
df['down_flow_mb'] = df['down_flow'] / 1024 / 1024  # 下行流量(MB)
df = df[df['duration'] != 0]  # 剔除使用时长为0的行
df = df[df['up_flow'] != 0]  # 剔除上行流量为0的行
df = df[df['down_flow'] != 0]  # 剔除下行流量为0的行


# 剔除使用时长和流量明显异常的行
# 剔除使用时长小于10秒的行
df = df[df['usage_time'] >= 10]
fig, axs = plt.subplots(1, 3, figsize=(10, 5))
axs[0].hist(df['usage_time'])
axs[0].set_title('Usage Time')
axs[0].set_xlabel('Time (minutes)')
axs[1].hist(df['up_flow_mb'])
axs[1].set_title('Up Flow')
axs[1].set_xlabel('Up Flow (MB)')
axs[2].hist(df['down_flow_mb'])
axs[2].set_title('Down Flow')
axs[2].set_xlabel('Down Flow (MB)')
plt.show()
df

在这里插入图片描述

3.2 特征工程

  1. 通过对APP的分析,提取出APP的分类信息,如游戏、社交、生活等。
  2. 统计每个用户使用的APP数量、使用总时长、总流量、平均每次使用时长、平均流量等特征。
  3. 统计每种APP…
  4. 。。。略
  5. 。。。略
  6. 。。。略
# APP分类信息(可根据app_id和app_class文件进行关联)
cate_df = pd.read_csv('初赛数据集/app_class.csv',header=None)
cate_df.columns = ['appid','letter']
# 定义字母编码映射字典
char_map = {chr(i + 96): i for i in range(1, 27)}
# 将'letter'列中的字母进行编码
cate_df['letter'] = cate_df['letter'].map(char_map)
cate_dict = dict(zip(cate_df['appid'],cate_df['letter']))
df['category'] = df['appid'].map(cate_dict)

# 用户的使用次数、使用总时长、总流量、平均每次使用时长、平均流量等特征
user_agg = df.groupby('uid').agg({'appid': 'nunique', 'usage_time': ['sum', 'mean'], 
                                  'up_flow_mb': ['sum', 'mean'], 'down_flow_mb': ['sum', 'mean']})
user_agg.columns = ['num_apps', 'total_usage_time', 'avg_usage_time', 
                    'total_up_flow', 'avg_up_flow', 'total_down_flow', 'avg_down_flow']


# APP的使用次数、使用总时长、总流量、平均每次使用时长、平均流量等特征
app_agg = df.groupby('appid').agg({'uid': 'nunique', 'usage_time': ['sum', 'mean'], 
                                   'up_flow_mb': ['sum', 'mean'], 'down_flow_mb': ['sum', 'mean']})
app_agg.columns = ['num_users', 'total_usage_time', 'avg_usage_time', 
                   'total_up_flow', 'avg_up_flow', 'total_down_flow', 'avg_down_flow']
app_agg['category'] = app_agg.index.map(cate_dict)
app_agg

在这里插入图片描述

。。。略
app_agg['category'] = app_agg.index.map(cate_dict)
app_agg

在这里插入图片描述

。。。略
user_daily_agg.columns = ['avg_num_apps', 'avg_daily_usage_time', 'avg_daily_up_flow', 'avg_daily_down_flow']
user_daily_agg['total_days'] = user_dates
user_daily_agg

在这里插入图片描述

。。。略
user_app_dates_agg.columns = ['min_app_dates', 'avg_app_dates', 'max_app_dates']
user_app_dates_agg

在这里插入图片描述

。。。略
app_daily_agg['total_days'] = app_dates.groupby('appid').size()
app_daily_agg

在这里插入图片描述

# 合并特征
merged_df_uid = pd.concat([user_agg,user_daily_agg,user_app_dates_agg], axis=1, join='inner')
merged_df_appid = pd.concat([app_agg,app_daily_agg], axis=1, join='inner')
raw_df = df[['uid','appid']]
all_df = pd.merge(raw_df,merged_df_uid,on='uid')
all_df = pd.merge(all_df,merged_df_appid,on='appid')
all_df = all_df.drop_duplicates(subset='uid')
all_df = all_df.dropna()
# 输出结果
all_df.to_excel('初赛数据集/all_df.xlsx', index=False)

3.3 问题一:聚类分析

3.3.1 KMeans

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

# 对df进行归一化

df = pd.read_excel('初赛数据集/all_df.xlsx')
df = df.drop(columns=['uid','appid'])
scaler = MinMaxScaler()
weight = scaler.fit_transform(df)
start = time.time()
trainingData = weight
SSE = []  # 存放每次结果的误差平方和
k1 = 2
k2 = 10
for k in range(k1, k2):
    pca = PCA(n_components=k)
    trainingData = pca.fit_transform(weight)
    estimator = KMeans(n_clusters=k, max_iter=10000, init="k-means++", tol=1e-6)
    estimator.fit(trainingData)
    SSE.append(estimator.inertia_) # estimator.inertia_获取聚类准则的总和
end = time.time()
print(f'耗时:{end-start}s')
X = range(k1,k2)
plt.figure(figsize=(8,6))
plt.xlabel('k',fontsize=20)
plt.ylabel('SSE',fontsize=20)
plt.plot(X, SSE, 'o-')
plt.savefig('img/pca降维-手肘法.png',dpi=300)
plt.show()

在这里插入图片描述

from sklearn.cluster import KMeans
start = time.time()
pca = PCA(n_components=10)
trainingData = pca.fit_transform(weight)
# trainingData = weight
clf = KMeans(n_clusters=4,max_iter=10000, init="k-means++", tol=1e-6)
result = clf.fit(trainingData)
source = list(clf.predict(trainingData))
end = time.time()
label = clf.labels_
print(f'耗时:{end-start}s')
silhouette = metrics.silhouette_score(trainingData, label)
print("silhouette: ", silhouette)
CHI = metrics.calinski_harabasz_score(trainingData, label)
print("CHI: ", CHI)

在这里插入图片描述

3.3.2 AGG聚类

start = time.time()
pca = PCA(n_components=10)
trainingData = pca.fit_transform(weight)
# 使用层次聚类
clf = AgglomerativeClustering(n_clusters=4, linkage='ward', affinity='euclidean')
result = clf.fit(trainingData)
source = list(clf.labels_)
end = time.time()
label = clf.labels_
print(f'耗时:{end-start}s')
silhouette = metrics.silhouette_score(trainingData, label)
print("silhouette: ", silhouette)
CHI = metrics.calinski_harabasz_score(trainingData, label)
print("CHI: ", CHI)

3.3.3 MeanShift聚类

start = time.time()
pca = PCA(n_components=10)
trainingData = pca.fit_transform(weight)
# 进行PCA降维
pca = PCA(n_components=10)
trainingData = pca.fit_transform(weight)

# 使用均值漂移聚类
clf = MeanShift(bandwidth=0.9)
result = clf.fit(trainingData)
source = list(clf.labels_)

end = time.time()
label = clf.labels_
print(f'耗时:{end-start}s')
silhouette = metrics.silhouette_score(trainingData, label)
print("silhouette: ", silhouette)
CHI = metrics.calinski_harabasz_score(trainingData, label)
print("CHI: ", CHI)

3.3.3 DBSCAN 聚类

from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA
import time
from sklearn import metrics
start = time.time()
pca = PCA(n_components=10)
trainingData = pca.fit_transform(weight)
trainingData = weight
clf = DBSCAN(eps=0.08, min_samples=7)
result = clf.fit(trainingData)
source = list(clf.fit_predict(trainingData))
end = time.time()
label = clf.labels_

print(f'耗时:{end-start}s')
silhouette = metrics.silhouette_score(trainingData, label)
print("silhouette: ", silhouette)
CHI = metrics.calinski_harabasz_score(trainingData, label)
print("CHI: ", CHI)

在这里插入图片描述

3.3.4 Birch聚类

pca = PCA(n_components=10)
trainingData = pca.fit_transform(weight)
trainingData = weight
clf = Birch(n_clusters=5, branching_factor=10, threshold=0.01)
start = time.time()
result = clf.fit(trainingData)
source = list(clf.predict(trainingData))
end = time.time()
label = clf.labels_
print(f'耗时:{end-start}s')
silhouette = metrics.silhouette_score(trainingData, label)
print("silhouette: ", silhouette)
CHI = metrics.calinski_harabasz_score(trainingData, label)
print("CHI: ", CHI)

在这里插入图片描述

4 下载

见知乎文章底部

zhuanlan.zhihu.com/p/643785015

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/756491.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32F10x外部中断/事件控制器(EXTI)应用

往期文章: STM32F1x固件库函数学习笔记(一) 文章目录 一、EXTI简介二、EXTI初始化结构体详解三、外部中断(EXTI)编程要点及例程参考文献 一、EXTI简介 外部中断/事件控制器,简称:EXTI&#x…

Jenkins打包、发布、部署

目录 前言 一、安装jdk 二、安装maven 三、安装git 四、安装jenkins 五、访问jenkins 六、创建用户 七、配置jenkins 八、执行 总结 前言 服务器:CentOS 7.9 64位 jdk:1.8 maven:3.9.1 git:git version 1.8.3.1 jenkins&a…

计算机中的数制与编码(二进制转换)

一、进制表示 1. 十进制表示 使用(0,1,2,…,9)十位数字表示,十进制运算时逢十进一。 2. 二进制表示 使用(0,1)两个数字表示,二进制运算时逢二进一。 3. 十六进制表示…

AIGC文生图:stable-diffusion-webui部署及使用

1 stable-diffusion-webui介绍 Stable Diffusion Web UI 是一个基于 Stable Diffusion 的基础应用,利用 gradio 模块搭建出交互程序,可以在低代码 GUI 中立即访问 Stable Diffusion Stable Diffusion 是一个画像生成 AI,能够模拟和重建几乎…

宝塔面板清理

查看磁盘使用情况时发现/dev/sda1满了,重启服务器也不行,瞎折腾了半天,才发现是宝塔的回收站占了较大的磁盘,于是按以下操作清理了下,就可以了 1、清除系统监控记录。打开宝塔面板后台,找到监控&#xff0c…

模拟面试2

1.说一说ArrayList的实现原理? ArrayList底层基于数组实现,内部封装了Object类型的数组,实现了list接口,通过默认构造器创建容器时,该数组被初始化为一个空数组,首次添加数据时再将其初始化为容量为10的数组…

变量生命符thread_local

thread_local是c11为线程安全引进的变量声明符。 thread_local是一个存储器指定符: 所谓存储器指定符,其作用类似命名空间,指定了变量名的存储期以及链接方式。同类型的关键字还有: static:静态或者线程存储期&…

2.我的第一个 JAVA 程序Helloword

对象:对象是类的一个实例,有状态和行为。例如,一条狗是一个对象,它的状态有:颜色、名字、品种;行为有:摇尾巴、叫、吃等。类:类是一个模板,它描述一类对象的行为和状态。…

前端videojs实现m3u8格式的直播

一、安装 npm install --save-dev video.js 二、引入 import videojs from "video.js"; import "video.js/dist/video-js.css"; 三、template 由于此处客户需要全屏至指定框大小,而不是全屏整个屏幕所以没用插件自带的全屏控件 隐藏自带全屏…

Unity 2DJoint 物理关节功能与总结

本文将以动图方式展示每个2D物理关节的效果,并解析部分重要参数的作用以及常见调配方式。 1.Distance Joint 2D(距离关节) 顾名思义是距离关节,以下为启用EnableCollision前后 关节使得两物体保持一定的距离,如果旋…

Apache (二十一)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、概述 二、安装 1. yum安装 2. 编译安装 三、 目录结构 1. yum安装 2. 编译安装 四、虚拟主机头配置 1. 基本配置 2. 实现方式 五、配置文件语法检查 六、 …

MySQL [环境配置]

MySQL [环境配置] MySQL的下载sqlyog的下载 熟悉老陈的人, 都清楚我不喜欢写这些环境配置的博客 那为啥这次要写一下MySQL的环境配置呢? 因为我被这一个小小的环境配置困扰了很长时间, 淋过雨的人都想为别人撑一把伞, 我不希望我的铁汁们也被这个问题困扰 MySQL的下载 MySQL下…

3. 测试 - 软件测试生命周期 BUG 的级别和生命周期

目录 1. 软件测试的生命周期 2. 描述 BUG 2.1 为什么要进行描述 2.2 如何描述一个 BUG 练习描述 BUG:邮箱登录不上去 练习描述 BUG:ie下界面显示异常,界面文字有重叠 3. BUG 的级别 4. BUG 的生命周期 1. 软件测试的生命周期 软件的…

【kubernetes系列】Kubernetes之Ingress

概述 从前面的学习,我们可以了解到Kubernetes暴露服务的方式目前常见的只有三种:LoadBlancer Service、NodePort Service、Ingress;而我们需要将集群内服务提供外界访问就会面临以下几个问题: Pod 漂移问题 Kubernetes 具有强大…

ubuntu 不能检测到显卡信息

开始时:lspci | grep -i nvidia 01:00.0 VGA compatible controller: NVIDIA Corporation Device 2489 (rev a1) 01:00.1 Audio device: NVIDIA Corporation Device 228b (rev a1) 运行sudo update-pciids 运行 lspci | grep -i nvidia 找到显卡了

Linux - 进阶 NFS服务器搭建 详解实验操作

建立 NFS 服务器,使用客户端成功访问 # 搭建环境 server 为服务端, node1 为客户端 ( 客户端是通过 服务端克隆出来的机子,并改了 IP 和 主机名) IP 都显示出,并且双方能够 Ping 通 这样准备环…

顶尖公司是平均水平的100倍,惊讶吗?

行业顶尖公司人员平均能力水平,在行业平均水平的100倍之上! 程序员的超级榜样:美国integram公司13个人,最后被facebook用10亿美金收购 《中庸》人能一之己百之,人能十之己千之 趣讲大白话:百倍努力&#xf…

项目管理软件挑选诀窍:6个必须知道的关键点!

项目管理软件对于任何希望简化其操作和提高效率的组织来说都是一个有价值的工具。然而,市场上有这么多的选择,选择合适的软件可能是一项艰巨的任务。在本文中,我们将讨论如何选择满足您业务需求的项目管理软件。 1、确定你的挑战和限制 选择项…

TL5000可调谐激光器控制软件系统

画了两周时间,利用下班时间,设计了一个ITLA可调谐激光器控制系统,从硬件到软件。 这是使用的界面,实现了下面的功能: 1、模块信息的读取,包括生产日期,生产厂家,型号,序…

在WIN10系统中安装TIA博途V18,重启后提示安装介质不可用,请插入DVD 或检查网络连接的解决办法

在WIN10系统中安装TIA博途V18,重启后提示安装介质不可用,请插入DVD 或检查网络连接的解决办法 原因:下载的安装包为ISO文件,若没有解压缩,直接点击打开安装,则会出现这样的错误提示。 解决办法: 把安装包解压缩之后再进行安装。 安装教程可参考以下步骤: 前提条件: T…