QUIC协议原理分析

news2024/11/24 19:49:00

Quic 相比现在广泛应用的 http2+tcp+tls 协议有如下优势 [2]:

  1. 减少了 TCP 三次握手及 TLS 握手时间。
  2. 改进的拥塞控制。
  3. 避免队头阻塞的多路复用。
  4. 连接迁移。
  5. 前向冗余纠错。

队头阻塞

队头阻塞主要是 TCP 协议的可靠性机制引入的。TCP 使用序列号来标识数据的顺序,数据必须按照顺序处理,如果前面的数据丢失,后面的数据就算到达了也不会通知应用层来处理。

另外 TLS 协议层面也有一个队头阻塞,因为 TLS 协议都是按照 record 来处理数据的,如果一个 record 中丢失了数据,也会导致整个 record 无法正确处理。

所以 QUIC 协议选择了 UDP,因为 UDP 本身没有连接的概念,不需要三次握手,优化了连接建立的握手延迟,同时在应用程序层面实现了 TCP 的可靠性,TLS 的安全性和 HTTP2 的并发性,只需要用户端和服务端的应用程序支持 QUIC 协议,完全避开了操作系统和中间设备的限制。

QUIC 核心特性连接建立延时低

0次RTT就能建立连接。

QUIC建立在UDP上所以这一层是0次,同时,在实现前向加密的基础上,并且 0RTT 的成功率相比 TLS 的 Sesison Ticket 要高很多。

拥塞算法

TCP 的拥塞控制实际上包含了四个算法:慢启动,拥塞避免,快速重传,快速恢复。

QUIC 协议当前默认使用了 TCP 协议的 Cubic 拥塞控制算法 [6],同时也支持 CubicBytes, Reno, RenoBytes, BBR, PCC 等拥塞控制算法。BBR:BBR算法通过不断地测量网络的带宽和延迟,来确定网络的瓶颈带宽,并根据瓶颈带宽和拥塞窗口来调整发送速率。

其次QUIC可拔插。应用程序层面就能实现不同的拥塞控制算法,不需要操作系统,不需要内核支持。即使是单个应用程序的不同连接也能支持配置不同的拥塞控制。

单调递增的 Packet Number

TCP 为了保证可靠性,使用了基于字节序号的 Sequence Number 及 Ack 来确认消息的有序到达。

QUIC 同样是一个可靠的协议,它使用 Packet Number 代替了 TCP 的 sequence number,并且每个 Packet Number 都严格递增,也就是说就算 Packet N 丢失了,重传的 Packet N 的 Packet Number 已经不是 N,而是一个比 N 大的值。而 TCP 呢,重传 segment 的 sequence number 和原始的 segment 的 Sequence Number 保持不变,也正是由于这个特性,引入了 Tcp 重传的歧义问题。

如上图所示,超时事件 RTO 发生后,客户端发起重传,然后接收到了 Ack 数据。由于序列号一样,这个 Ack 数据到底是原始请求的响应还是重传请求的响应呢?不好判断。

如果算成原始请求的响应,但实际上是重传请求的响应(上图左),会导致采样 RTT 变大。如果算成重传请求的响应,但实际上是原始请求的响应,又很容易导致采样 RTT 过小。

由于 Quic 重传的 Packet 和原始 Packet 的 Pakcet Number 是严格递增的,所以很容易就解决了这个问题。

如上图所示,RTO 发生后,根据重传的 Packet Number 就能确定精确的 RTT 计算。如果 Ack 的 Packet Number 是 N+M,就根据重传请求计算采样 RTT。如果 Ack 的 Pakcet Number 是 N,就根据原始请求的时间计算采样 RTT,没有歧义性。

但是单纯依靠严格递增的 Packet Number 肯定是无法保证数据的顺序性和可靠性。QUIC 又引入了一个 Stream Offset 的概念。

即一个 Stream 可以经过多个 Packet 传输,Packet Number 严格递增,没有依赖。但是 Packet 里的 Payload 如果是 Stream 的话,就需要依靠 Stream 的 Offset 来保证应用数据的顺序。如错误! 未找到引用源。所示,发送端先后发送了 Pakcet N 和 Pakcet N+1,Stream 的 Offset 分别是 x 和 x+y。

假设 Packet N 丢失了,发起重传,MM重传的 Packet Number 是 N+2,但是它的 Stream 的 Offset 依然是 x,这样就算 Packet N + 2 是后到的,依然可以将 Stream x 和 Stream x+y 按照顺序组织起来,交给应用程序处理。

不允许 Reneging

什么叫 Reneging 呢?就是接收方丢弃已经接收并且上报给 SACK 选项的内容 [8]。TCP 协议不鼓励这种行为,但是协议层面允许这样的行为。主要是考虑到服务器资源有限,比如 Buffer 溢出,内存不够等情况。

SACK(Selective Acknowledgment)选项是TCP协议中的一种扩展选项,它可以在TCP连接中支持选择性确认,从而提高网络的性能和可靠性。当TCP数据包在传输过程中发生丢失时,接收方可以使用SACK选项来告诉发送方哪些数据包已经接收到了,从而避免重传已经接收到的数据包。这种方式可以减少网络拥塞和重传次数,提高网络的吞吐量和响应速度。

Reneging 对数据重传会产生很大的干扰。因为 Sack 都已经表明接收到了,但是接收端事实上丢弃了该数据。

QUIC 在协议层面禁止 Reneging,一个 Packet 只要被 Ack,就认为它一定被正确接收,减少了这种干扰。

更多的 Ack 块

由于 TCP 头部最大只有 60 个字节,标准头部占用了 20 字节,所以 Tcp Option 最大长度只有 40 字节,再加上 Tcp Timestamp option 占用了 10 个字节 [25],所以留给 Sack 选项的只有 30 个字节。

每一个 Sack Block 的长度是 8 个,加上 Sack Option 头部 2 个字节,也就意味着 Tcp Sack Option 最大只能提供 3 个 Block。

但是 Quic Ack Frame 可以同时提供 256 个 Ack Block,在丢包率比较高的网络下,更多的 Sack Block 可以提升网络的恢复速度,减少重传量。

Ack Delay 时间

cp 的 Timestamp 选项存在一个问题 [25],它只是回显了发送方的时间戳,但是没有计算接收端接收到 segment 到发送 Ack 该 segment 的时间。这个时间可以简称为 Ack Delay。

这样就会导致 RTT 计算误差。如下图:

 

 基于 stream 和 connecton 级别的流量控制

QUIC 的流量控制和 TCP 有点区别,TCP 为了保证可靠性,窗口左边沿向右滑动时的长度取决于已经确认的字节数。如果中间出现丢包,就算接收到了更大序号的 Segment,窗口也无法超过这个序列号。

但 QUIC 不同,就算此前有些 packet 没有接收到,它的滑动只取决于接收到的最大偏移字节数。

没有队头阻塞的多路复用

多路复用是 HTTP2 最强大的特性,能够将多条请求在一条 TCP 连接上同时发出去。但也恶化了 TCP 的一个问题,队头阻塞,如下图示:

 HTTP2 在一个 TCP 连接上同时发送 4 个 Stream。其中 Stream1 已经正确到达,并被应用层读取。但是 Stream2 的第三个 tcp segment 丢失了,TCP 为了保证数据的可靠性,需要发送端重传第 3 个 segment 才能通知应用层读取接下去的数据,虽然这个时候 Stream3 和 Stream4 的全部数据已经到达了接收端,但都被阻塞住了。

那 QUIC 多路复用为什么能避免上述问题呢?

  1. QUIC 最基本的传输单元是 Packet,不会超过 MTU 的大小,整个加密和认证过程都是基于 Packet 的,不会跨越多个 Packet。这样就能避免 TLS 协议存在的队头阻塞。
  2. Stream 之间相互独立,比如 Stream2 丢了一个 Pakcet,不会影响 Stream3 和 Stream4。不存在 TCP 队头阻塞

当然,并不是所有的 QUIC 数据都不会受到队头阻塞的影响,比如 QUIC 当前也是使用 Hpack 压缩算法 [10],由于算法的限制,丢失一个头部数据时,可能遇到队头阻塞。

总体来说,QUIC 在传输大量数据时,比如视频,受到队头阻塞的影响很小。

连接迁移

一条 TCP 连接 [17] 是由四元组标识的(源 IP,源端口,目的 IP,目的端口)。什么叫连接迁移呢?就是当其中任何一个元素发生变化时,这条连接依然维持着,能够保持业务逻辑不中断。当然这里面主要关注的是客户端的变化,因为客户端不可控并且网络环境经常发生变化,而服务端的 IP 和端口一般都是固定的。

比如大家使用手机在 WIFI 和 4G 移动网络切换时,客户端的 IP 肯定会发生变化,需要重新建立和服务端的 TCP 连接。

又比如大家使用公共 NAT 出口时,有些连接竞争时需要重新绑定端口,导致客户端的端口发生变化,同样需要重新建立 TCP 连接。

针对 TCP 的连接变化,MPTCP[5] 其实已经有了解决方案,但是由于 MPTCP 需要操作系统及网络协议栈支持,部署阻力非常大,目前并不适用。

所以从 TCP 连接的角度来讲,这个问题是无解的。

那 QUIC 是如何做到连接迁移呢?很简单,任何一条 QUIC 连接不再以 IP 及端口四元组标识,而是以一个 64 位的随机数作为 ID 来标识,这样就算 IP 或者端口发生变化时,只要 ID 不变,这条连接依然维持着,上层业务逻辑感知不到变化,不会中断,也就不需要重连。

由于这个 ID 是客户端随机产生的,并且长度有 64 位,所以冲突概率非常低。

 

参考文献

科普:QUIC协议原理分析 - 知乎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/754295.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

学C的第二十七天【指针的进阶(三)】

相关代码gitee自取:C语言学习日记: 加油努力 (gitee.com) 接上期: 学C的第二十六天【指针的进阶(二)】_高高的胖子的博客-CSDN博客 复习巩固: 数组名: 数组名是数组首元素的地址, 但是有两个…

数据结构与算法:10种常见算法

前言 本文主要讲解10种常见算法 数据结构与算法文章列表 数据结构与算法文章列表: 点击此处跳转查看 目录 1 二分查找算法 二分查找(Binary Search)是一种在有序数组中查找目标值的常用算法。它通过将目标值与数组中间元素进行比较,可以快…

Cesium被接入数字孪生系统后会产生怎样的改变?

众所周知,Cesium凭借其开源免费的特点一直垄断着整个三维GIS的生态系统,但是随着数字孪生技术的发展以及各项新需求的不断涌现,Cesium与数字孪生系统相结合的潜力也逐渐凸显。 一般而言,Cesium如果想要升级视效就需要去用CesiumF…

基于springboot的智慧养老系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

常用的前端可视化Web组态工具

前言 随着创新技术驱动工业物联网不断发展,设备联网所产生的多样化数据,在边缘端与云端进行大数据分析,成为工业应用场景数字化的需求。跨系统可通用,不受硬件限制达成无缝整合,监控组态软件SCADA成为物联网时代建构出…

Unity游戏源码分享-Unity手游火柴忍者游戏StickmanDojo

Unity游戏源码分享-Unity手游火柴忍者游戏StickmanDojo 项目地址:https://download.csdn.net/download/Highning0007/88050234

Windows bat隐藏运行窗口的几种方案

文章目录 一、背景二、测试数据三、隐藏bat运行窗口方案1. 使用VBScript脚本2. 使用mshta调用js或vbs脚本3. 将bat编译为exe程序4. 使用任务计划程序 一、背景 有些程序在执行批处理脚本时,可能会看到dos窗口,或者看到窗口一闪而过。如果批处理脚本执行…

Layui基本功能(增删改查)

话不多说,根据我前面的博客我们直接进行操作。记住以下的文件放置,防止操作出不来. 这是我们要完成的界面及功能 后台功能实现 数据查看 我们在userDao方法里面进行增删改查的方法我们在userAction进行方法的编写R工具类的介绍 查询 userDao方法 因为我…

使用亚马逊(AWS)云服务在S3上实现图片缩放功能(CloudFront/S3[AccessPoint/LambdaAccessPoint])

亚马逊云服务中的S3对象存储功能和国内阿里云的oss对象存储使用基本一致。但是涉及到存储内容处理时,两家有些差别。 比如:对于云存储中的图片资源,阿里云比较人性化对于基本的缩放裁剪功能已经帮我们封装好了,只需要在url地址后…

window环境下安装Node并修改保存缓存的位置

0, 卸载Node 打开cmd命令行窗口 输入: npm cache clean --force然后在控制面版中卸载node 1,官网下载Node.js 点击官网下载 如一台电脑需要多个node环境 可使用nvm命令进行操作安装并且可以切换 2, 配置环境变量 安装成功之后&#x…

竹云参编 |《数据经纪从业人员评价规范》团体标准在2023全球数字经济大会发布

经国务院批准,由北京市人民政府、国家发展和改革委员会、工业和信息化部、商务部、国家互联网信息办公室、中国科学技术协会共同主办的2023全球数字经济大会在中国北京国家会议中心隆重召开。 深圳竹云科技股份有限公司作为主要编制单位,联合深圳数据交…

新大陆物联网云平台-物联网云平台推荐-免费好用的物联网平台

一、前言 作为多年的物联网开发者,使用过很多付费的物联网云平台,包括阿里云、华为云等,也使用过很多免费开源的物联网云平台,但就操作来说,我认为最便利的还是新大陆物联网云平台(NLECloud - 新大陆物联网…

【Elasticsearch】DSL查询文档

目录 1.DSL查询文档 1.1.DSL查询分类 1.2.全文检索查询 1.2.1.使用场景 1.2.2.基本语法 1.2.3.示例 1.2.4.总结 1.3.精准查询 1.3.1.term查询 1.3.2.range查询 1.3.3.总结 1.4.地理坐标查询 1.4.1.矩形范围查询 1.4.2.附近查询 1.5.复合查询 1.5.1.相关性算分 …

vagrant和vitrulBox创建虚拟机后使用xshell连接

1. 先在cmd使用vagrant ssh连接主机, 修改系统配置,允许密码登录 vi /etc/ssh/sshd_config PasswordAuthentication no 将这行的no改成yes 2. 重启ssh service sshd restart 3.打开ssh,输入主机ip 端口22 账号root 密码默认为 vagrant

解决 param image not exist 与 image format error(百度 AI)

前言 注意,此文的 AI,是指识别图文、人脸的 AI 功能,而不是文心一言那种对话形 AI。 最近在尝试使用百度 AI 功能,很有趣是不假了,但也有很多坑,特此记录一下。 正文 后文以使用 通用物体和场景识别 功能…

Linux之磁盘管理

说一下linux中磁盘分区问题 首先每一个分区都是独立的 ,基本上来说都是可以独立分配空间的 但是一般如下目录是自动放到根目录下面的 如果根分区用完了,/home下面的分区空间还能用吗,对系统有什么影响 文件类型 给linux虚拟机扩展分区 备注&…

简爱思维导图怎么画?几个超实用绘制步骤赶紧get

简爱思维导图怎么画?思维导图是一种有效的信息组织和表达工具,能够帮助我们更好地整理思路、提高学习效率。下面这篇文章就带大家了解一下简爱思维导图的绘制步骤,并分享4个超实用步骤,助你快速掌握。 在绘制思维导图之前&#xf…

Linux中常用的监控性能的命令(sar、mpstat,vmstat, iostat,)详解

Linux中常用的监控性能的命令有: sar:能查看CPU的平均信息,还能查看指定CPU的信息。与mpstat相比,sar能查看CPU历史信息 mpstat:能查看所有CPU的平均信息,还能查看指定CPU的信息。 与sar相比&#xff0c…

解密横幅banner图的制作秘籍:一文帮你解答所有疑问

Banner是网站首页的关键元素之一。访问者进入网站后,一般首先看到的是Banner图。Banner图会很大程度上影响访问者对网站的第一印象,以及网站对访问者的吸引力。 如果banner图设计得很好,访问者会有兴趣继续阅读。如果Banner图设计得不好&…

【数据结构导论】第 7 章:排序

目录 一、概述 (1)基本概念 (2)排序分类 (3)排序文件的物理表示 —— 数组表示 二、插入排序(通过比较插入实现排序) (1)直接插入排序 ① 过程 ② 算…