某网站提交登陆信息加密JS逆向实战分析

news2024/11/25 20:17:26

1. 写在前面

  对于爬虫开发者来说,职业生涯中可能或多或少会遇到各种各样的网站,其中有些必要要求登陆才能浏览。那么模拟登陆的时候发现提交的登陆信息(用户名密码)都是经过加密后的,如何处理?这里找到了一个网站案例,正所谓换汤不换药,案例的参考是逆向技巧与方法积累的重要补给

目标站点

aHR0cDovL2xvZ2luLndzZ2pwLmNvbS5jbi8=

2. 分析请求

本次我们的目标则是针对登陆提交的表单信息(用户名密码)加密进行一个逆向的分析,所以我们直接先随意构造一个不存在的信息点击提交然后进行抓包分析:
在这里插入图片描述

这里需要说的一下对于我们新手来说我们在JS逆向分析的时候,如何才能快速的找到请求的URL,有时候请求的URL是非常多的,可能少到几十多到上百个

我们如何快速的筛选与甄别,比如善用关键词搜索:
在这里插入图片描述

因为所有的提交点击操作请求都会发送到服务器,服务器再把数据发送过来渲染到网站上,所以上面反馈的信息,必定是经过某URLl请求过来的

3. 找加密点

接下来我们就是要找到上面的用户名跟密码是如何加密的,按照上述方式我们将password当成关键词搜索:
在这里插入图片描述

在这里可以看到有时候搜索出来可能有多个文件都带有我们搜索的password,这种情况如果是新手经验不多,那么我们就慢慢的看、分析与发现。例如上图绿色加深的关键词处js文件内有加密字样的代码,就跟我们使用排查法一样,加密解密这些特征词都是我们找寻的对象

我们可以看搜索到的这两行加密调用代码:

userName: encryptedString(key, encodeURIComponent(username)),
password: encryptedString(key, $('#password').val()),

这两行代码只有我们断点分析以后才能知道是不是我们要找的加密点,因为在搜索的时候可以看到很多时候多个文件中都存在这些关键词,有的JS中并没有使用

好的,现在我们来断点分析一下:
在这里插入图片描述
设置完断点后,我们再次提交一次登陆信息,可以看到断点停留在了479行断点处。我们将鼠标停留可以看到userNamepassword加密值都是由encryptedString的两处生成

有时候在做JS逆向分析的时候善用控制台调试能够帮助我们更直观判断我们的推断,这个小Tips大家一定要记住!我们把加密函数放到Console控制台输出看一下:
在这里插入图片描述
我们可以看到加密调用是在setMaxDigits这个函数里面并且在加密之前还调用了RSAKeyPair函数,所以这两函数也是需要扣的,加最后调用的encryptedString加密函数
在这里插入图片描述

4. 扣代码

扣代码,主要扣取的就是目标代码内的逻辑与算法!在扣取代码的时候,只需要将鼠标移动至函数名上,如上图所示会弹出一个提示框点击跳转即可到目标函数,可以发现这几个函数的代码并不多,大约在几百行需要注意的是扣JS代码的时候有些时候代码量非常庞大,切记不要一股脑的拿下来,很多都是无用的逻辑,严重影响效率

function RSAKeyPair() {
    var encryptionExponent = "010001";
    var decryptionExponent = "";
    var modulus = "9A568982EE4BF010C38B5195A6F2DC7D66D5E6C02098CF25044CDD031AC08C6569D7063BB8959CB3FCB5AF572DE355AFA684AF7187948744E673275B494F394AF7F158841CA8B63BF65F185883F8D773A57ED731EDCD1AF2E0E57CD45F5F3CB4EBDD38F4A267E5ED02E7B44B93EDFFDADBDC8368019CD496BEC735BAF9E57125";
    this.e = biFromHex(encryptionExponent);
    this.d = biFromHex(decryptionExponent);
    this.m = biFromHex(modulus);
    this.digitSize = 2 * biHighIndex(this.m) + 2;
    this.chunkSize = this.digitSize - 11;
    this.radix = 16;
    this.barrett = new BarrettMu(this.m);
}

function twoDigit(n) {
    return (n < 10 ? "0" : "") + String(n);
}

function encryptedString(key, s) {
    if (key.chunkSize > key.digitSize - 11) {
        return "Error";
    }
    var a = new Array();
    var sl = s.length;

    var i = 0;
    while (i < sl) {
        a[i] = s.charCodeAt(i);
        i++;
    }
    var al = a.length;
    var result = "";
    var j, k, block;
    for (i = 0; i < al; i += key.chunkSize) {
        block = new BigInt();
        j = 0;
        var x;
        var msgLength = (i + key.chunkSize) > al ? al % key.chunkSize : key.chunkSize;
        var b = new Array();
        for (x = 0; x < msgLength; x++) {
            b[x] = a[i + msgLength - 1 - x];
        }
        b[msgLength] = 0; // marker
        var paddedSize = Math.max(8, key.digitSize - 3 - msgLength);

        for (x = 0; x < paddedSize; x++) {
            b[msgLength + 1 + x] = Math.floor(Math.random() * 254) + 1;
        }

        b[key.digitSize - 2] = 2; // marker
        b[key.digitSize - 1] = 0; // marker

        for (k = 0; k < key.digitSize; ++j) {
            block.digits[j] = b[k++];
            block.digits[j] += b[k++] << 8;
        }
        var crypt = key.barrett.powMod(block, key.e);
        var text = key.radix == 16 ? biToHex(crypt) : biToString(crypt, key.radix);
        result += text + " ";
    }
    return result.substring(0, result.length - 1); // Remove last space.
}

var biRadixBase = 2;
var biRadixBits = 16;
var bitsPerDigit = biRadixBits;
var biRadix = 1 << 16; // = 2^16 = 65536
var biHalfRadix = biRadix >>> 1;
var biRadixSquared = biRadix * biRadix;
var maxDigitVal = biRadix - 1;
var maxInteger = 9999999999999998;


var maxDigits;
var ZERO_ARRAY;
var bigZero, bigOne;

function setMaxDigits(value)
{
    maxDigits = value;
    ZERO_ARRAY = new Array(maxDigits);
    for (var iza = 0; iza < ZERO_ARRAY.length; iza++) ZERO_ARRAY[iza] = 0;
    bigZero = new BigInt();
    bigOne = new BigInt();
    bigOne.digits[0] = 1;
}

setMaxDigits(20);

// The maximum number of digits in base 10 you can convert to an
// integer without JavaScript throwing up on you.
var dpl10 = 15;
// lr10 = 10 ^ dpl10
var lr10 = biFromNumber(1000000000000000);

function BigInt(flag)
{
    if (typeof flag == "boolean" && flag == true) {
        this.digits = null;
    }
    else {
        this.digits = ZERO_ARRAY.slice(0);
    }
    this.isNeg = false;
}

function biFromDecimal(s)
{
    var isNeg = s.charAt(0) == '-';
    var i = isNeg ? 1 : 0;
    var result;
    // Skip leading zeros.
    while (i < s.length && s.charAt(i) == '0') ++i;
    if (i == s.length) {
        result = new BigInt();
    }
    else {
        var digitCount = s.length - i;
        var fgl = digitCount % dpl10;
        if (fgl == 0) fgl = dpl10;
        result = biFromNumber(Number(s.substr(i, fgl)));
        i += fgl;
        while (i < s.length) {
            result = biAdd(biMultiply(result, lr10),
                biFromNumber(Number(s.substr(i, dpl10))));
            i += dpl10;
        }
        result.isNeg = isNeg;
    }
    return result;
}

function biCopy(bi)
{
    var result = new BigInt(true);
    result.digits = bi.digits.slice(0);
    result.isNeg = bi.isNeg;
    return result;
}

function biFromNumber(i)
{
    var result = new BigInt();
    result.isNeg = i < 0;
    i = Math.abs(i);
    var j = 0;
    while (i > 0) {
        result.digits[j++] = i & maxDigitVal;
        i = Math.floor(i / biRadix);
    }
    return result;
}

function reverseStr(s)
{
    var result = "";
    for (var i = s.length - 1; i > -1; --i) {
        result += s.charAt(i);
    }
    return result;
}

var hexatrigesimalToChar = new Array(
    '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
    'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
    'u', 'v', 'w', 'x', 'y', 'z'
);

function biToString(x, radix)
// 2 <= radix <= 36
{
    var b = new BigInt();
    b.digits[0] = radix;
    var qr = biDivideModulo(x, b);
    var result = hexatrigesimalToChar[qr[1].digits[0]];
    while (biCompare(qr[0], bigZero) == 1) {
        qr = biDivideModulo(qr[0], b);
        digit = qr[1].digits[0];
        result += hexatrigesimalToChar[qr[1].digits[0]];
    }
    return (x.isNeg ? "-" : "") + reverseStr(result);
}

function biToDecimal(x)
{
    var b = new BigInt();
    b.digits[0] = 10;
    var qr = biDivideModulo(x, b);
    var result = String(qr[1].digits[0]);
    while (biCompare(qr[0], bigZero) == 1) {
        qr = biDivideModulo(qr[0], b);
        result += String(qr[1].digits[0]);
    }
    return (x.isNeg ? "-" : "") + reverseStr(result);
}

var hexToChar = new Array('0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
    'a', 'b', 'c', 'd', 'e', 'f');

function digitToHex(n)
{
    var mask = 0xf;
    var result = "";
    for (i = 0; i < 4; ++i) {
        result += hexToChar[n & mask];
        n >>>= 4;
    }
    return reverseStr(result);
}

function biToHex(x)
{
    var result = "";
    var n = biHighIndex(x);
    for (var i = biHighIndex(x); i > -1; --i) {
        result += digitToHex(x.digits[i]);
    }
    return result;
}

function charToHex(c)
{
    var ZERO = 48;
    var NINE = ZERO + 9;
    var littleA = 97;
    var littleZ = littleA + 25;
    var bigA = 65;
    var bigZ = 65 + 25;
    var result;

    if (c >= ZERO && c <= NINE) {
        result = c - ZERO;
    } else if (c >= bigA && c <= bigZ) {
        result = 10 + c - bigA;
    } else if (c >= littleA && c <= littleZ) {
        result = 10 + c - littleA;
    } else {
        result = 0;
    }
    return result;
}

function hexToDigit(s)
{
    var result = 0;
    var sl = Math.min(s.length, 4);
    for (var i = 0; i < sl; ++i) {
        result <<= 4;
        result |= charToHex(s.charCodeAt(i))
    }
    return result;
}

function biFromHex(s)
{
    var result = new BigInt();
    var sl = s.length;
    for (var i = sl, j = 0; i > 0; i -= 4, ++j) {
        result.digits[j] = hexToDigit(s.substr(Math.max(i - 4, 0), Math.min(i, 4)));
    }
    return result;
}

function biFromString(s, radix)
{
    var isNeg = s.charAt(0) == '-';
    var istop = isNeg ? 1 : 0;
    var result = new BigInt();
    var place = new BigInt();
    place.digits[0] = 1; // radix^0
    for (var i = s.length - 1; i >= istop; i--) {
        var c = s.charCodeAt(i);
        var digit = charToHex(c);
        var biDigit = biMultiplyDigit(place, digit);
        result = biAdd(result, biDigit);
        place = biMultiplyDigit(place, radix);
    }
    result.isNeg = isNeg;
    return result;
}

function biDump(b)
{
    return (b.isNeg ? "-" : "") + b.digits.join(" ");
}

function biAdd(x, y)
{
    var result;

    if (x.isNeg != y.isNeg) {
        y.isNeg = !y.isNeg;
        result = biSubtract(x, y);
        y.isNeg = !y.isNeg;
    }
    else {
        result = new BigInt();
        var c = 0;
        var n;
        for (var i = 0; i < x.digits.length; ++i) {
            n = x.digits[i] + y.digits[i] + c;
            result.digits[i] = n % biRadix;
            c = Number(n >= biRadix);
        }
        result.isNeg = x.isNeg;
    }
    return result;
}

function biSubtract(x, y)
{
    var result;
    if (x.isNeg != y.isNeg) {
        y.isNeg = !y.isNeg;
        result = biAdd(x, y);
        y.isNeg = !y.isNeg;
    } else {
        result = new BigInt();
        var n, c;
        c = 0;
        for (var i = 0; i < x.digits.length; ++i) {
            n = x.digits[i] - y.digits[i] + c;
            result.digits[i] = n % biRadix;
            // Stupid non-conforming modulus operation.
            if (result.digits[i] < 0) result.digits[i] += biRadix;
            c = 0 - Number(n < 0);
        }
        // Fix up the negative sign, if any.
        if (c == -1) {
            c = 0;
            for (var i = 0; i < x.digits.length; ++i) {
                n = 0 - result.digits[i] + c;
                result.digits[i] = n % biRadix;
                // Stupid non-conforming modulus operation.
                if (result.digits[i] < 0) result.digits[i] += biRadix;
                c = 0 - Number(n < 0);
            }
            // Result is opposite sign of arguments.
            result.isNeg = !x.isNeg;
        } else {
            // Result is same sign.
            result.isNeg = x.isNeg;
        }
    }
    return result;
}

function biHighIndex(x)
{
    var result = x.digits.length - 1;
    while (result > 0 && x.digits[result] == 0) --result;
    return result;
}

function biNumBits(x)
{
    var n = biHighIndex(x);
    var d = x.digits[n];
    var m = (n + 1) * bitsPerDigit;
    var result;
    for (result = m; result > m - bitsPerDigit; --result) {
        if ((d & 0x8000) != 0) break;
        d <<= 1;
    }
    return result;
}

function biMultiply(x, y)
{
    var result = new BigInt();
    var c;
    var n = biHighIndex(x);
    var t = biHighIndex(y);
    var u, uv, k;

    for (var i = 0; i <= t; ++i) {
        c = 0;
        k = i;
        for (j = 0; j <= n; ++j, ++k) {
            uv = result.digits[k] + x.digits[j] * y.digits[i] + c;
            result.digits[k] = uv & maxDigitVal;
            c = uv >>> biRadixBits;
            //c = Math.floor(uv / biRadix);
        }
        result.digits[i + n + 1] = c;
    }
    // Someone give me a logical xor, please.
    result.isNeg = x.isNeg != y.isNeg;
    return result;
}

function biMultiplyDigit(x, y)
{
    var n, c, uv;

    result = new BigInt();
    n = biHighIndex(x);
    c = 0;
    for (var j = 0; j <= n; ++j) {
        uv = result.digits[j] + x.digits[j] * y + c;
        result.digits[j] = uv & maxDigitVal;
        c = uv >>> biRadixBits;
        //c = Math.floor(uv / biRadix);
    }
    result.digits[1 + n] = c;
    return result;
}

function arrayCopy(src, srcStart, dest, destStart, n)
{
    var m = Math.min(srcStart + n, src.length);
    for (var i = srcStart, j = destStart; i < m; ++i, ++j) {
        dest[j] = src[i];
    }
}

var highBitMasks = new Array(0x0000, 0x8000, 0xC000, 0xE000, 0xF000, 0xF800,
    0xFC00, 0xFE00, 0xFF00, 0xFF80, 0xFFC0, 0xFFE0,
    0xFFF0, 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF);

function biShiftLeft(x, n)
{
    var digitCount = Math.floor(n / bitsPerDigit);
    var result = new BigInt();
    arrayCopy(x.digits, 0, result.digits, digitCount,
        result.digits.length - digitCount);
    var bits = n % bitsPerDigit;
    var rightBits = bitsPerDigit - bits;
    for (var i = result.digits.length - 1, i1 = i - 1; i > 0; --i, --i1) {
        result.digits[i] = ((result.digits[i] << bits) & maxDigitVal) |
            ((result.digits[i1] & highBitMasks[bits]) >>>
                (rightBits));
    }
    result.digits[0] = ((result.digits[i] << bits) & maxDigitVal);
    result.isNeg = x.isNeg;
    return result;
}

var lowBitMasks = new Array(0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F,
    0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF,
    0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF);

function biShiftRight(x, n)
{
    var digitCount = Math.floor(n / bitsPerDigit);
    var result = new BigInt();
    arrayCopy(x.digits, digitCount, result.digits, 0,
        x.digits.length - digitCount);
    var bits = n % bitsPerDigit;
    var leftBits = bitsPerDigit - bits;
    for (var i = 0, i1 = i + 1; i < result.digits.length - 1; ++i, ++i1) {
        result.digits[i] = (result.digits[i] >>> bits) |
            ((result.digits[i1] & lowBitMasks[bits]) << leftBits);
    }
    result.digits[result.digits.length - 1] >>>= bits;
    result.isNeg = x.isNeg;
    return result;
}

function biMultiplyByRadixPower(x, n)
{
    var result = new BigInt();
    arrayCopy(x.digits, 0, result.digits, n, result.digits.length - n);
    return result;
}

function biDivideByRadixPower(x, n)
{
    var result = new BigInt();
    arrayCopy(x.digits, n, result.digits, 0, result.digits.length - n);
    return result;
}

function biModuloByRadixPower(x, n)
{
    var result = new BigInt();
    arrayCopy(x.digits, 0, result.digits, 0, n);
    return result;
}

function biCompare(x, y)
{
    if (x.isNeg != y.isNeg) {
        return 1 - 2 * Number(x.isNeg);
    }
    for (var i = x.digits.length - 1; i >= 0; --i) {
        if (x.digits[i] != y.digits[i]) {
            if (x.isNeg) {
                return 1 - 2 * Number(x.digits[i] > y.digits[i]);
            } else {
                return 1 - 2 * Number(x.digits[i] < y.digits[i]);
            }
        }
    }
    return 0;
}

function biDivideModulo(x, y)
{
    var nb = biNumBits(x);
    var tb = biNumBits(y);
    var origYIsNeg = y.isNeg;
    var q, r;
    if (nb < tb) {
        // |x| < |y|
        if (x.isNeg) {
            q = biCopy(bigOne);
            q.isNeg = !y.isNeg;
            x.isNeg = false;
            y.isNeg = false;
            r = biSubtract(y, x);
            // Restore signs, 'cause they're references.
            x.isNeg = true;
            y.isNeg = origYIsNeg;
        } else {
            q = new BigInt();
            r = biCopy(x);
        }
        return new Array(q, r);
    }

    q = new BigInt();
    r = x;

    // Normalize Y.
    var t = Math.ceil(tb / bitsPerDigit) - 1;
    var lambda = 0;
    while (y.digits[t] < biHalfRadix) {
        y = biShiftLeft(y, 1);
        ++lambda;
        ++tb;
        t = Math.ceil(tb / bitsPerDigit) - 1;
    }
    // Shift r over to keep the quotient constant. We'll shift the
    // remainder back at the end.
    r = biShiftLeft(r, lambda);
    nb += lambda; // Update the bit count for x.
    var n = Math.ceil(nb / bitsPerDigit) - 1;

    var b = biMultiplyByRadixPower(y, n - t);
    while (biCompare(r, b) != -1) {
        ++q.digits[n - t];
        r = biSubtract(r, b);
    }
    for (var i = n; i > t; --i) {
        var ri = (i >= r.digits.length) ? 0 : r.digits[i];
        var ri1 = (i - 1 >= r.digits.length) ? 0 : r.digits[i - 1];
        var ri2 = (i - 2 >= r.digits.length) ? 0 : r.digits[i - 2];
        var yt = (t >= y.digits.length) ? 0 : y.digits[t];
        var yt1 = (t - 1 >= y.digits.length) ? 0 : y.digits[t - 1];
        if (ri == yt) {
            q.digits[i - t - 1] = maxDigitVal;
        } else {
            q.digits[i - t - 1] = Math.floor((ri * biRadix + ri1) / yt);
        }

        var c1 = q.digits[i - t - 1] * ((yt * biRadix) + yt1);
        var c2 = (ri * biRadixSquared) + ((ri1 * biRadix) + ri2);
        while (c1 > c2) {
            --q.digits[i - t - 1];
            c1 = q.digits[i - t - 1] * ((yt * biRadix) | yt1);
            c2 = (ri * biRadix * biRadix) + ((ri1 * biRadix) + ri2);
        }

        b = biMultiplyByRadixPower(y, i - t - 1);
        r = biSubtract(r, biMultiplyDigit(b, q.digits[i - t - 1]));
        if (r.isNeg) {
            r = biAdd(r, b);
            --q.digits[i - t - 1];
        }
    }
    r = biShiftRight(r, lambda);
    // Fiddle with the signs and stuff to make sure that 0 <= r < y.
    q.isNeg = x.isNeg != origYIsNeg;
    if (x.isNeg) {
        if (origYIsNeg) {
            q = biAdd(q, bigOne);
        } else {
            q = biSubtract(q, bigOne);
        }
        y = biShiftRight(y, lambda);
        r = biSubtract(y, r);
    }
    // Check for the unbelievably stupid degenerate case of r == -0.
    if (r.digits[0] == 0 && biHighIndex(r) == 0) r.isNeg = false;

    return new Array(q, r);
}

function biDivide(x, y)
{
    return biDivideModulo(x, y)[0];
}

function biModulo(x, y)
{
    return biDivideModulo(x, y)[1];
}

function biMultiplyMod(x, y, m)
{
    return biModulo(biMultiply(x, y), m);
}

function biPow(x, y)
{
    var result = bigOne;
    var a = x;
    while (true) {
        if ((y & 1) != 0) result = biMultiply(result, a);
        y >>= 1;
        if (y == 0) break;
        a = biMultiply(a, a);
    }
    return result;
}

function biPowMod(x, y, m)
{
    var result = bigOne;
    var a = x;
    var k = y;
    while (true) {
        if ((k.digits[0] & 1) != 0) result = biMultiplyMod(result, a, m);
        k = biShiftRight(k, 1);
        if (k.digits[0] == 0 && biHighIndex(k) == 0) break;
        a = biMultiplyMod(a, a, m);
    }
    return result;
}


上面这堆JS则是实现加密算法的代码,这里看了一下代码做一个简单的分析,虽然我们没有必要深入了解太多加密算法的逻辑,但是如果能够知其然并知其所以然,那我们也能自己用其他的方式或者语言实现它的整个加密算法:

  • RSAKeyPair这个函数它定义了一个RSA密钥对,可以看到encryptionExponent 是公钥,decryptionExponent 是私钥,然后通过调用其他函数,将公私钥指数和其他变量存储在 RSA 密钥的对象中
  • encryptedString函数主要实现了字符串的一些个加密操作,接受密钥和字符串作为参数。检查密钥的 chunkSize是否合法,并将字符串转换为字符数组,根据chunkSize将字符数组分块加密。加密过程中,使用随机生成的填充数据再返回加密后的字符串
  • BigInt函数是一个大整数类,用于处理大数运算。它包含了大整数的属性和方法,例如创建大整数、复制大整数、比较大小、相加、相减等操作
  • biFromHex函数将十六进制字符串转换为大整数。它从字符串的末尾开始,每四位转换为一个十进制数字,并将其存储在大整数对象的 digits 属性中
  • biMultiply函数实现了两个大整数的乘法运算。它使用传统的竖式乘法算法,逐位相乘并考虑进位
  • biModulo函数计算两个大整数的模运算结果,即返回除法的余数部分
  • biPowMod函数计算大整数的幂模运算结果。它使用快速幂算法来提高计算效率

它们干的一件事:共同组成了一个简单的RSA加密算法

这里可以看到密码加密处的$(‘#password’)表示密码输入框的jQuery选择器,通过模拟用户输入来传递参数。所以我们这里需要简单的写两个测试函数调用验证一下即可:

// 用户名加密
function UsernameEncryption(username) {
    setMaxDigits(129);
    var key = new RSAKeyPair();
    return encryptedString(key, encodeURIComponent(username))
}

// 密码加密
function PasswordEncryption() {
    setMaxDigits(129);
    var key = new RSAKeyPair();
    var password = '123456'
    $('#password').val(password);
    return encryptedString(key, $('#password').val())
}

接下来直接把上面的封装好的JS代码放到调试工具测试即可,JS的调试工具还是比较多的,这里我们主要是思路,验证的话还是在控制台输出一下(扣代码的时候缺什么就补什么):

在这里插入图片描述
到了这里我们就完整的拿到了登陆提交信息的加密方案,以上的所扣取的JS代码可以放到我们Python代码中调用,也可以自己实现当然肯定有一定的难度,一般大部分的JS逆向工作中都是直接调用的方式

这是一个非常简单的案例,在找加密点扣取对应JS代码这些都没有太大的难度,都是一些JS逆向中常见技巧

  好了,到这里又到了跟大家说再见的时候了。创作不易,帮忙点个赞再走吧。你的支持是我创作的动力,希望能带给大家更多优质的文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/753877.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

我只改五行代码,接口性能提升了 10 倍!

背景 某公司的一个 ToB 系统&#xff0c;因为客户使用的也不多&#xff0c;没啥并发要求&#xff0c;就一直没有经过压测。这两天来了一个“大客户”&#xff0c;对并发量提出了要求&#xff1a;核心接口与几个重点使用场景单节点吞吐量要满足最低500/s的要求。 当时一想&am…

C++ IO流

文章目录 C语言的输入与输出流是什么?CIO流C标准IO流C文件流 stringstream的简单介绍 C语言的输入与输出 在C语言中,我们使用最频繁的输入输出方式为: scanf 和 printf. scanf : 从输入设备(键盘)读取数据,并将值存放在变量中.printf: 将指定的文字/字符串输出到标准输出设备…

数据库约束与表的关系(数据库系列4)

目录 前言&#xff1a; 1.数据库的约束 1.1约束类型 1.1.1 not null 1.1.2 unique 唯一约束 1.1.3 default 默认值约束 1.1.4 primary key 主键约束 1.1.5 foreign key 外键约束 2.表的关系 2.1 一对一 2.2 一对多 2.3 多对一 3.新增 4.聚合查询 4.1聚合函数 4.…

Pinecone - 向量数据库

文章目录 关于 PineconeRoadMapSemantic SearchChatbots购买查看 API Key创建索引代码调用安装库 pinecone-client查看已经创建的索引创建索引插入数据获取索引统计分析信息查询索引,获取相似向量删除索引关于 Pinecone 官网 : https://www.pinecone.i

利用layui构建OA系统基本操作

一.编写方法&#xff08;增加&#xff0c;删除&#xff0c;修改&#xff0c;查询&#xff09; 通过继承BaseDao来实现通用&#xff0c;从而减少代码量&#xff0c;提高小路 1.增加 public int add(User user) throws Exception {String sql "insert into t_oa_user(name…

Windows7中使用SRS集成音视频一对一通话

SRS早就具备了SFU的能力&#xff0c;比如一对一通话、多人通话、直播连麦等等。在沟通中&#xff0c;一对一是常用而且典型的场景&#xff0c; 让我们一起来看看如何用SRS做直播和RTC一体化的一对一通话。 一、启动windows7-docker 二、拉取SRS镜像 执行命令:docker pull oss…

修改jar包中的文件内容

文章目录 导引查找是否存在需要修改的文件vim命令修改配置文件jar命令替换jar包中的文件(也可新增)解压jar包&#xff0c;修改后重新打包jar修改clas文件jar命令参数 导引 首先问问为什么要直接修改jar包中的文件&#xff0c;而不是重新打包&#xff0c;在非必要的情况下&…

【动手学深度学习】pytorch-参数管理

pytorch-参数管理 概述 我们的目标是找到使损失函数最小化的模型参数值。 经过训练后&#xff0c;我们将需要使用这些参数来做出未来的预测。 此外&#xff0c;有时我们希望提取参数&#xff0c;以便在其他环境中复用它们&#xff0c; 将模型保存下来&#xff0c;以便它可以在…

python数据挖掘基础环境安装和使用

文章目录 一&#xff0e;安装python环境二、库的安装2.1 使用pip命令安装virtualenvv扩展&#xff1a;cmd无法使用pip&#xff0c;报错&#xff1a;Fatal error in launcher: Unable to create process using ... 2.2 安装virtualenvwrapper-win2.3 新建一个用于人工智能环境的…

腾讯云 API 3.0(V3版签名) 通用接口 Delphi 版

目录 一、腾讯云API 3.0 简介&#xff1a; 二、Delphi 接口函数说明&#xff1a; 1. Delphi 接口包含的单元&#xff1a; 2. 同步调用和异步调用的区别&#xff1a; 3. 程序调用示例&#xff1a; 三、Delphi 版腾讯云API 3.0 版接口函数下载 四、演示程序录播 下载源程序…

DB2数据库SQL将不同行做合计

DB2数据库SQL将不同行做合计 案例&#xff1a; 将’GL’和’RZ’做合计&#xff0c;其他的不动。 SELECT SALE_TYPE,ROUND(CAST(SUM(aatp_weight) AS DOUBLE),2) AS aatp_weight FROM( SELECT CASE WHEN SALE_TYPE GL THEN RZ ELSE SALE_TYPE END AS SALE_TYPE, DEMAND_NUM / …

基于NXP iMX8MP处理器M7核心LVGL移植

By Toradex胡珊逢 LVGL (Light and Versatile Graphics Library)是一个轻量级的开源图形库&#xff0c;采用 C 或者 MicroPython 语言开发。可以在资源有限的 MCU 上轻松地绘制图形界面。Verdin iMX8M Plus 模块的处理器除了 Cortex-A53 核心外&#xff0c;还具有一个 Cortex-M…

如何运营校园外卖跑腿小程序

运营校园外卖跑腿小程序需要考虑多个方面&#xff0c;包括市场调研、合作伙伴选择、用户获取与留存、服务管理和推广等。下面是一些关键步骤和策略&#xff1a; 市场调研&#xff1a; 在开始运营之前&#xff0c;进行市场调研是非常重要的。了解目标用户的需求和习惯&#xf…

HarmonyOS学习路之方舟开发框架—方舟开发框架(ArkUI)概述

方舟开发框架&#xff08;简称ArkUI&#xff09;为HarmonyOS应用的UI开发提供了完整的基础设施&#xff0c;包括简洁的UI语法、丰富的UI功能&#xff08;组件、布局、动画以及交互事件&#xff09;&#xff0c;以及实时界面预览工具等&#xff0c;可以支持开发者进行可视化界面…

JVM系列(6)——类加载器详解双亲委派

一、类加载器 类加载器是一个负责加载类的对象&#xff0c;用于实现类加载过程中的加载这一步。 主要作用就是加载 Java 类的字节码&#xff08; .class 文件&#xff09;到 JVM 中&#xff08;在内存中生成一个代表该类的 Class 对象&#xff09;。 加载过程可以看 JVM系列&a…

人工智能-反向传播

前面阐述过&#xff0c;在设计好一个神经网络后&#xff0c;参数的数量可能会达到百万级别&#xff0c;利用梯度下降去更新参数计算复杂&#xff0c;算力不足&#xff0c;因此需要一种有效计算梯度的方法&#xff0c;这种方法就是辛顿提出的反向传播&#xff08;简称BP&#xf…

【算法基础】搜索与图论

DFS 全排列问题 842. 排列数字 - AcWing题库 #include<bits/stdc.h> using namespace std; const int N10; int n; int path[N]; bool st[N]; void dfs(int x) {if(x>n){for(int i1;i<n;i) cout<<path[i]<<" ";cout<<endl;return ;…

高级测试工程师求职之路:从笔试到面试,我经历了什么?

最近行业里有个苦涩的笑话&#xff1a;公司扛过了之前的三年&#xff0c;没扛过摘下最近的一年&#xff0c;真是让人想笑又笑不出来。年前听说政策的变化&#xff0c;大家都满怀希望觉得年后行情一片大好&#xff0c;工作岗位激增&#xff0c;至少能有更多的机会拥抱未来。然而…

【每日一题】979. 在二叉树中分配硬币

【每日一题】979. 在二叉树中分配硬币 979. 在二叉树中分配硬币题目描述解题思路 979. 在二叉树中分配硬币 题目描述 给你一个有 n 个结点的二叉树的根结点 root &#xff0c;其中树中每个结点 node 都对应有 node.val 枚硬币。整棵树上一共有 n 枚硬币。 在一次移动中&…

计算机体系结构基础知识介绍之线程级并行性及其利用

线程级并行&#xff08;Thread Level Parallelism&#xff0c;TLP&#xff09;是指在多个处理器或多个核心上同时执行多个线程&#xff0c;从而提高程序的性能和吞吐量。线程级并行的基本原理是利用程序中的数据或任务的并行性&#xff0c;将程序划分为若干个相对独立的子任务&…