libtorch 是 pytorch 的 C++ 版本,支持 CPU 端和 GPU 端的模型部署。相较于用 tensorrt 部署 pytorch 模型,用 libtorch的优势在于:pytorch 和 libtorch 同属一个生态,API 语句比较接近,并且不会出现某网络层不支持的问题。这里咱们来看一下 libtorch 怎么调用模型进行推理的。
这里咱们以 resnet50 为例。
首先加载 resnet50 模型,并导出 trace 模型。
# 准备一个 py 脚本,里面内容如下
import torch
import torchvision
model = torchvision.models.resnet50(pretrained=False)
model = model.eval().cuda()
input_data = torch.randn(1, 3, 224, 224).cuda()
# export trace model
traced_script_model = torch.jit.trace(model, input_data)
output = traced_script_model(data)
traced_script_model.save('resnet50.pt')
print(output)
这里就会导出 trace 模型 resnet50.pt。然后编写推理工程。
先写 infer.cpp:
// infer.cpp
#include "torch/torch.h"
#include "torch/script.h"
#include <iostream>
int main(){
// torch::Tensor tensor = torch::ones(3);
// std::cout << tensor << std::endl;
torch::jit::script::Module module;
module = torch::jit::load("~/resnet50.pt"); // 导入前面生成的trace模型
module.to(at::kCUDA); // 放到GPU上执行
// 构建输入张量
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch::ones({1, 3, 224, 224}).to(at::kCUDA));
// 执行推理
at::Tensor output = module.forward(inputs).toTensor();
std::cout << output << std::endl;
}
然后编写 CMakeList.txt:
cmake_minimum_required(VERSION 2.8 FATAL_ERROR)
find_package(PythonInterp REQUIRED)
project(infer_resnet50)
set(Torch_DIR ~/libtorch/share/cmake/Torch) #你解压的libtorch的绝对路径
find_package(Torch REQUIRED)
set(CMAKE_CXX_FLAGS "${CAMKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
set(CUDA_INCLUDE_DIRS "/usr/local/cuda/include")
add_executable(infer_resnet50 infer.cpp)
#link libtorch .a .so
target_link_libraries(infer_resnet50 "${TORCH_LIBRARIES}")
target_include_directories(infer_resnet50 PRIVATE CUDA_INCLUDE_DIRS)
#
set_property(TARGET infer_resnet50 PROPERTY CXX_STANDARD 14)
开始编译 & 执行:
mkdir build
cd build
cmake ..
make -j8
正常执行输出结果:
作者:极智视界
链接:https://juejin.cn/post/7153132249028755463