强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。
本专栏整理了近几年国际顶级会议中,涉及强化学习(Reinforcement Learning, RL)领域的论文。顶级会议包括但不限于:ICML、AAAI、IJCAI、NIPS、ICLR、AAMAS、CVPR、ICRA等。
今天给大家分享的是2018年神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems)中涉及“强化学习”主题的论文。
NIPS(NeurIPS),全称神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems),是一个关于机器学习和计算神经科学的国际会议。该会议固定在每年的12月举行,由NIPS基金会主办。NIPS是机器学习领域的顶级会议。在中国计算机学会的国际学术会议排名中,NIPS为人工智能领域的A类会议。
- [1]. Evolution-Guided Policy Gradient in