模拟和矢量信号源进阶使用技巧

news2025/1/14 18:13:50

前言

通常射频信号源的简单应用通常只是输入频率、功率,加上一些模拟、数字调制,然而要充分挖掘出信号源的潜力和性能需要更多的技巧。本应用指南会告诉您可以通过更多的方式提高射频信号源输出信号的质量,具体内容包括:

1. 提高功率精度

2. 提高频率精度

3. 提高源匹配度

4. TOI(三阶交调)测量:如何合成两个CW信号并保持足够的隔离度

5. 减小谐波失真

6. 提高信噪比

7. LTE测试中EVM与ACLR指标的优化

8. 减小衰减器切换的磨损

一个典型的模拟信号源的结构图如下所示。本文所涉及的射频信号源不仅包括模拟信号源,还会聊到矢量信号源。

1. 提高功率精度

如下图1所示,信号源从端口输出的信号,通常会经过一些无源器件(如射频线缆、滤波器、同轴转接头或者开关、放大器)才到达DUT。因此,到达DUT的信号功率的精度就会受到这些器件衰减或放大。在一些测量应用中,比如接收机灵敏度测试,输入到DUT的信号功率的精度是影响灵敏度测量精度的关键要素。

图1. 信号源输出信号设置

为了保证输入到DUT的功率是预期值并保证精度,通常会如下图2所示,用功率计(功率测量的不确定度较小)或者频谱仪(功率测量的不确定度较大)测量每一个频点所对应的功率的损耗(偏移),把这个损耗(偏移)补偿到信号源里。具体的实现方法是,如果功率计的读数和信号源的设置功率有差值,那么就把这个差值补偿到信号源的功率偏移功能里,每一个频率点对应一个功率偏移值。当信号源输出指定频率的指定功率时,信号源会自动提高偏移值大小的输出功率,从而补偿功率的损耗。但是,这种方法的明显缺点在于,每个频点对应的功率损耗都不同,要做到精确补偿和每个频点补偿值的手动输入很麻烦。

​图2. 功率计测量信号源输出信号

为了提高效率和精确度,信号源提供了User Correction (UCOR)功能,通过设置一张指定频点的补偿表格,功率探头会将功率损耗或增益(统称为偏移量,用正负表示)自动填充到表格中。

​图4

信号源输出的功率不是理想恒定的,而是随着时间和温度的变化有波动。虽然信号源内部有自动电平控制电路(ALC)来减小这种波动,但是对电平精度要求很高的应用(如计量),就需要找到可溯源和定标方法进一步实时监控并补偿减小电平波动。User Correction (UCOR)功能虽然能补偿电平,但是无法做到实时,当表格写好之后,就无法实时补偿随着温度引起的电平变化。

信号源都配备了闭环电平控制功能(Closed loop power control),如下图所示。需要借助一个定向耦合器通过耦合臂耦合一部分功率给功率探头,功率探头事先把该定向耦合器的耦合度的S参数下载到功率探头的内存中,然后实时计算不同的频点的真实功率,通过数据线反馈给信号源。信号源根据功率探头的每次实时测试结果数据来调整电平,补偿电平的波动。

2. 提高频率精度

信号源的输出信号频率的精度分为绝对精度和相对精度两种。

绝对精度可以使用更精准、老化率更低的参考时钟源来提高。信号源都标配了一个普通的参考时钟源,另外可以选配高精度的恒温晶振来作为参考时钟源,如R&S SMBV提供B1和B1H两种参考时钟源的频率误差和年老化率和标配的相比都大幅度降低。

此外,信号源的外参考输入连接到GPS时钟或者高稳定度原子钟(铯钟、铷钟)也可以大幅度提高频率绝对精度。

相对精度是指多个信号(例如多CW信号)的相对频率间隔的精度。假设两台信号源分别产生一个CW信号,中心频率1GHz,频率间隔1MHz。信号源的内部时钟的老化率通常是±1×10-6/年,那么在这种情况下,1GHz×1×10-6= ±1000Hz因此,两个CW信号的频率间隔实际上可能是1MHz±(2×1000Hz) =998kHz或1200kHz。为了提高频率间隔的精度,把两台信号源的参考时钟连在一起,即一台信号源输出参考时钟给另外一台。这样,频率间隔的精度可提高到1MHz×1×10-6=1Hz。

3. 提高源匹配度

许多DUT的端口匹配不好,因此源匹配至关重要。信号源与负载的阻抗失配会使输入到DUT的信号有效功率改变。DUT通常很少直接连接到信号源输出端口,而是通过射频线缆和其它器件(如适配器、滤波器)。如果使用适配器进行接头类型转换或者滤波器进行谐波抑制,这些器件会降低源匹配。负载的反射波会在源和负载之间形成多次反射,从而输入到待测件功率的不确定度增大了。

为了减小失配的影响,最简单的方法就是在信号源和DUT之间插入一个固定值衰减器,这会提高源匹配于两倍衰减器的值。具体的计算过程如下所示:

没有衰减器插入时,失配误差为0.67dB。

当插入一个6dB的衰减器,失配误差降低为0.17dB。

4. TOI测量

当把两个信号源输出的CW信号通过外部合路器合路成双音信号送入待测设备进行TOI测量时,两台信号源互相的隔离度是非常重要的。

如果信号源互相的隔离不好,信号源会通过ALC环路互调产生新的互调产物,从而无法测量到DUT的互调性能。如下图所示。所以建议在ALC中选择OFF,关闭ALC。

因此,每一个信号源输出都希望是良好的50欧姆匹配。当使用阻性合路器时,只有两个端口有电阻的合路器不能在三个端口都提供50欧姆的输入阻抗匹配。使用每个端口都有电阻的合路器,而不是只有两个端口有电阻的合路器,如下左图所示。此外,每个端口都有电阻的合路器在信号输入端口还提供6dB的隔离度。或者使用下右图所示的威尔金森合路器。

5. 减小谐波失真

进行准确的谐波测量需要信号失真度很小的信号源和频谱仪。信号源的谐波和频谱分析仪的动态范围是影响的主要因素,通常信号源的谐波是瓶颈--一般信号源的谐波抑制度在-30dB左右。

减小信号源谐波的传统方法是使用一个低通滤波器--通过选择截止频率来滤除谐波、保留基波。然而,这种方法最大的缺点就是低通滤波器的戒指频率一般是固定不可调的,要实现在不同频点进行滤波不现实。

​为了更有效灵活的减小谐波,就要进一步深入分析谐波产生的源头。从信号源的结构上来看,产生和消除谐波的主要有三部分。而OPU电路是谐波抑制度变差的源头。谐波主要由OPU产生,随着OPU输出功率的增大而增大。

① 频综:产生谐波的源头(VCO, amplifiers in compression, divider stages)

② 谐波滤波器:滤除频综的谐波,谐波小于-80 dBc

③ OPU(output uint,功率放大器+ALC环路+衰减器组 ):谐波抑制变差,-40 dBc

​分析OPU的工作机制,功率放大器和衰减器组的功能是联动调节使得信号源功率输出的动态范围在+30dBm到-145dBm改变。通常情况下,信号源OPU并没有工作于固定输出功率状态,而是配合衰减器在一定范围内调整输出功率,以得到合适的仪表输出功率,如下图所示。

​从OPU的工作方式可以找到降低谐波的方法,如下图所示:

① 设置输出功率比想要的输出功率高10~15dB,那么步进衰减器的衰减值会减小,这时把衰减器的“Mode”改为“Fixed”从而固定衰减器的衰减值;

② 再减小功率到想到的输出功率。

以上是手动调整,信号源在“RF BLOCK”中也提供“Low Distortion”模式来自动完成上述的手动调整过程,但精细的调整仍需要手动完成。

​虽然降低了谐波,但是带来的缺点也是不可忽视的。首先宽带噪声恶化,另外电平准确度也降低。

6. 提高信噪比

上一节讲到利用OPU和衰减器组的工作特性减小输出信号的谐波,那么从另一方面,也可以以增大谐波为代价,提高信号的信噪比。

① 设置输出功率比想要的输出功率低10 ~15 dB,那么步进衰减器的衰减值会增加,这时把衰减器的“Mode”改为“Fixed”从而固定衰减器的衰减值;

② 再增加输出功率到想到的输出功率。但谐波功率会增大。

以上是手动调整,信号源在“RF BLOCK”中也提供“Low Noise”模式来自动完成上述的手动调整过程,但精细的调整仍需要手动完成。

​7. EVM与ACLR指标的优化

矢量信号源的EVM和ACLR指标一般在datasheet中会给出指标值。在R&S高端矢量信号源SMW200A的datasheet里,以特定的WCDMA test model为测试信号给出了EVM和ACLR的最优保证值,但其它类型的信号是否也能达到这样的指标呢?答案是不一定的,需要用户自己调整和优化。

影响信号源产生的信号的EVM和ACLR的主要因素主要有如下三点,EVM与ACLR是相互决定、制约的关系,不可兼顾。

1) 调制方式和峰均比

2) 发射滤波器类型和滚降因子

3) 信号源自身的非线性特性(如基带信号畸变或射频发射功率)

与WCDMA和CDMA2000在协议中规定了使用何种滤波器不同,LTE标准并没有在协议中指定一个特定的发射滤波器类型,而是允许根据应用场景使用不同的滤波器来达到更优的EVM还是更优的ALCR。

在R&S矢量信号源SMW200A中,LTE选件提供了三种不同的滤波器以满足不同的优化目标。

​LTE将OFDM符号组装成子帧,最终形成一帧LTE信号。但在前后两个OFDM信号之间存在相位不连续的情况,而相位不连续会出现频谱泄漏,会影响信号的ACLR特性。R&S信号源LTE选件提供时域窗功能对信号进行平滑以优化ACLR特性。但过度的时域窗平滑会导致OFDM符号的EVM恶化,以牺牲EVM为代价的。

下面是对这三种优化方式EVM和ACLR对比(LTE TM1.1_10MHz)。

此外,SMW200A的DAC和IQ调制器还提供优化EVM的“High Quality”模式,通过内置的校准数据补偿基带IQ信号的幅度、时延和正交性等参数不理想特性。

8. 减小衰减器切换的磨损

下面来谈谈信号源在产线测试中的优化。在此之前,需要介绍一下信号源的衰减器组的实现方式,通常是机械衰减器或电子衰减器。

​机械衰减器的优点、缺点:

+ 高衰减范围

+ 在大于12.75GHz以上一般只能用机械衰减器

+ 低温度漂移

+ 低插入损耗

+ 低VSWR

- 较长的切换时间(> 20 ms)

- 长时间使用磨损较为严重

- 做功率扫描衰减器切换时噪声较大

另外一种电子衰减器的优点、缺点:

+ 高衰减范围

+ 较短的切换时间

+ 几乎无切换磨损

- 工作频段较低

- 低输出功率

- GaAs工艺较高的温度漂移

在产线进行发射机自动化功率测试时,通常上位机会控制待测件和激励信号源会进行功率连续扫描调整到额定发射功率。信号源的输出信号在机械或电子衰减器切换时会产生信号闪断的现象,导致待测件输出信号的间断。

为了避免信号的间断,可把“RF BLOCK”中衰减器的模式由“Auto”切换为“Fixed”,即关闭衰减器的切换,此时信号源能输出的功率范围仅由放大器调节而被局限在一个较小的范围内,如下所示。但此时,信号的功率变化不会引起衰减器切换从而避免信号闪断和减小衰减器的磨损。

此外,还可以将“RF OFF Mode”从“Full Attenuated”切换为“Unchanged”模式,这样在关断射频信号的时候衰减器保持不变,不会切换为最大衰减值,从而减小了衰减器的磨损。

作者:Altair Tang

来源:模拟和矢量信号源进阶使用技巧 - RFASK射频问问

关于RFASK射频问问

射频问问是在"微波射频网”系列原创技术专栏基础上升级打造的技术问答学习平台,主要围绕射频芯片、微波电路、天线、雷达、卫星等相关技术领域,致力于为无线通信、微波射频、天线、雷达等行业的工程师,提供优质、原创的技术问答、专栏文章、射频课程等学习内容。更多请访问:http://www.rfask.net

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/74607.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【LeetCode_字符串_逻辑分析】6. Z 字形变换

目录考察点第一次:2022年12月9日10:58:17解题思路代码展示题目描述6. Z 字形变换 将一个给定字符串 s 根据给定的行数 numRows ,以从上往下、从左到右进行 Z 字形排列。 比如输入字符串为 “PAYPALISHIRING” 行数为 3 时,排列如下&#xf…

DAP组件外部服务开发说明

DAP数据分析平台主要是为了满足企业数据分析的需要而开发的一款产品,不同于一般的BI平台,DAP数据分析平台更侧重数据的聚合,平台预置有数据源注册、ODS注册与管理、数仓配置与数据聚合,从而实现企业业务数据的统一,构建…

不掌握这些坑,你敢用BigDecimal吗?

背景 一直从事金融相关项目,所以对BigDecimal再熟悉不过了,也曾看到很多同学因为不知道、不了解或使用不当导致资损事件发生。 所以,如果你从事金融相关项目,或者你的项目中涉及到金额的计算,那么你一定要花时间看看…

C++ 特殊类的设计

文章目录1. 设计一个只能在堆上创建对象的类2. 设计一个只能在栈上创建对象的类3. 设计一个类不能被拷贝4. 设计一个类 不能被继承5. 设计一个类,只能创建一个对象前言: 在本文中,我们掌握几种常见的特殊类的设计。1. 设计一个只能在堆上创建…

微信小程序使用vant 和 mobx 自动定义Tabbar

vant 和 mobx 自动定义Tabbar 在此案例中,用到的主要知识点如下: 自定义组件 Vant 组件库 MobX 数据共享 组件样式隔离 组件数据监听器 组件的 behaviors Vant 样式覆盖 1.首先需要给我们的app.json 配置tabBar “custom”:true 注意点&…

代码随想录算法训练营第五十九天| LeetCode503. 下一个更大元素 II、LeetCode42. 接雨水

一、LeetCode503. 下一个更大元素 II 1:题目描述(503. 下一个更大元素 II) 给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。 数字 x 的…

实践 DevOps 测试策略

什么是 DevOps 测试策略? DevOps 的一个重要组成部分是持续集成/持续交付(CI/CD),在 CI 和 CD 之间的就是持续测试。 如果不进行持续测试,将会出现: 缺陷的泄漏软件延期交付客户不满意DevOps 测试策略的好处 可以提供更快的反…

如何在vscode、remix中结合hardhat编译部署合约

创建 hardhat 工程 # 创建npm空项目,注意这里要选择合约项目对应的文件目录 npm init # 安装 hardhat 环境,这里安装的版本 2.11.1 npm install --save-dev hardhat2.11.1 # 创建工程 npx hardhat首先创建 npm 空项目,注意这里要选择合约项目…

Linux编程环境

一、实验目的 1.熟悉Linux下C语言程序设计的基本步骤 2.掌握gcc编译器的各种参数的使用方法 3.掌握gcc编译器创建函数库的方法 4.掌握gdb调试程序的方法 5.掌握多文件编译中的makefile的用法 二、实验软硬件要求…

matlab学习笔记(八)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 matlab学习笔记(八)一、傅里叶变换的MATLAB求解二、连续时间信号的频谱图三、MATLAB分析LTI系统的频率特性一、傅里叶变换的MATLAB求解 MATLAB的symb…

大学生网页设计制作作业实例代码 (全网最全,建议收藏) HTML+CSS+JS

文章目录📚web前端期末大作业 (1500套) 集合一、网页介绍二、网页集合三、作品演示A电影主题B漫画主题C商城主题D家乡主题E旅游主题F餐饮/美食主题G环境主题H游戏主题I 个人主题K体育主题L博客主题M汽车主题N文化主题P美妆主题Q企业主题R教育主题S其他主题&#x1f…

Docker的私有仓库部署——Harbor

一.Docker原生私有仓库—— Registry 1.1 Registry的简单了解 关于Docker的仓库分为私有库和公有仓库,共有仓库只要在官方注册用户,登录即可使用。但对于仓库的使用,企业还是会有自己的专属镜像,所以私有库的搭建也是很有必要的…

力扣(LeetCode)1780. 判断一个数字是否可以表示成三的幂的和(C++)

进制转换 转换 333 进制,如果每一位非 000 即 111 ,returntruereturn\ truereturn true (数字 000 除外)。 如果任意一位为 222 ,returnfalsereturn\ falsereturn false 。 证明: 对于第 ppp 位, 如果 p0p0p0 &#…

数据结构——树和二叉树最全总结(期末复习必备)

目录 树和二叉树 树的基本术语(均以上图b为例): 遍历二叉树: 线索二叉树: 树的存储结构: 树与二叉树的转换(利用的就是把二叉树和树表示成相同的二叉链表): 森林与二…

KubeSphere 接入外部 Elasticsearch 最佳实践

作者:张坚,科大讯飞开发工程师,云原生爱好者。 大家好,我是张坚。今天来聊聊如何在 KubeSphere 中集成外置的 ES 组件。 KubeSphere 在安装完成时候可以启用日志组件,这样会安装 ES 组件并可以收集所有部署组件的日志…

索引优化学习

背景 最近做查询优化,学到的。字段长度,索引长度联合索引计算是否使用范围查询使用索引 字段长度(varchar) 只谈论varchar:首先我们建表varchar(20) 中的20是字符数。看你的数据库编码 执行:show creat…

支持多种网关类型!米尔基于Zynq-7010/20开发平台工业网关设计应用

随着工业物联网的飞速的发展,5G时代的到来,工业控制系统在生产领域应用越来越广泛,工业物联网为未来工业控制系统灵活性和可扩展性的需求提供了支持。工业物联网使我们的生产数据可以进行规模化集中存储,并利用高速采集、云计算等…

ChatGPT国产平替出现了:APP商店就能下载,还可给AI加人设,背后公司刚成立3个月...

明敏 发自 凹非寺量子位 | 公众号 QbitAIChatGPT太火爆谁不想上手试试?但注册复杂、服务器拥挤……着实有点麻烦。不过很快就有极客网友指路,说国内其实已经有类似的APP上线了,也是上知天文下知地理的那种。比如聊聊《三体》,还会…

Transformer 训练优化

前言 自 BERT 出现以来,NLP 领域已经进入了大模型的时代,大模型虽然效果好,但是毕竟不是人人都有着丰富的 GPU 资源,在训练时往往就捉襟见肘,出现显存 out of memory 的问题,或者训练时间非常非常的久&…

web期末大作业:基于html+css+js制作深圳大学网站(13页) 学校班级网页制作模板 学生静态HTML网页源码

🎉精彩专栏推荐 💭文末获取联系 ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 💂 作者主页: 【主页——🚀获取更多优质源码】 🎓 web前端期末大作业: 【📚毕设项目精品实战案例 (10…