1亿条数据批量插入 MySQL,哪种方式最快?

news2024/11/28 11:11:31

利用JAVA向Mysql插入一亿数量级数据—效率测评

这几天研究mysql优化中查询效率时,发现测试的数据太少(10万级别),利用 EXPLAIN 比较不同的 SQL 语句,不能够得到比较有效的测评数据,大多模棱两可,不敢通过这些数据下定论。

所以通过随机生成人的姓名、年龄、性别、电话、email、地址 ,向mysql数据库大量插入数据,便于用大量的数据测试 SQL 语句优化效率。、在生成过程中发现使用不同的方法,效率天差万别。

1、先上Mysql数据库,随机生成的人员数据图。分别是ID、姓名、性别、年龄、Email、电话、住址。

下图一共三千三百万数据:

在数据量在亿级别时,别点下面按钮,会导致Navicat持续加载这亿级别的数据,导致电脑死机。~觉着自己电脑配置不错的可以去试试,可能会有惊喜

2、本次测评一共通过三种策略,五种情况,进行大批量数据插入测试

策略分别是:

  • Mybatis 轻量级框架插入(无事务)

  • 采用JDBC直接处理(开启事务、无事务)

  • 采用JDBC批处理(开启事务、无事务)

测试结果:

Mybatis轻量级插入 -> JDBC直接处理 -> JDBC 批处理。

JDBC 批处理,效率最高

第一种策略测试:

2.1 Mybatis 轻量级框架插入(无事务)

Mybatis是一个轻量级框架,它比hibernate轻便、效率高。

但是处理大批量的数据插入操作时,需要过程中实现一个ORM的转换,本次测试存在实例,以及未开启事务,导致mybatis效率很一般。

这里实验内容是:

  • 利用Spring框架生成mapper实例、创建人物实例对象

  • 循环更改该实例对象属性、并插入。

//代码内无事务

 private long begin = 33112001;//起始id
    private long end = begin+100000;//每次循环插入的数据量
    private String url = "jdbc:mysql://localhost:3306/bigdata?useServerPrepStmts=false&rewriteBatchedStatements=true&useUnicode=true&characterEncoding=UTF-8";
    private String user = "root";
    private String password = "0203";
    
    
@org.junit.Test
    public void insertBigData2()
    {
        //加载Spring,以及得到PersonMapper实例对象。这里创建的时间并不对最后结果产生很大的影响
        ApplicationContext context = new ClassPathXmlApplicationContext("applicationContext.xml");
        PersonMapper pMapper = (PersonMapper) context.getBean("personMapper");
        //创建一个人实例
        Person person = new Person();
        //计开始时间
        long bTime = System.currentTimeMillis();
        //开始循环,循环次数500W次。
        for(int i=0;i<5000000;i++)
        {
            //为person赋值
            person.setId(i);
            person.setName(RandomValue.getChineseName());
            person.setSex(RandomValue.name_sex);
            person.setAge(RandomValue.getNum(1, 100));
            person.setEmail(RandomValue.getEmail(4,15));
            person.setTel(RandomValue.getTel());
            person.setAddress(RandomValue.getRoad());
            //执行插入语句
            pMapper.insert(person);
            begin++;
        }
        //计结束时间
        long eTime = System.currentTimeMillis();
        System.out.println("插入500W条数据耗时:"+(eTime-bTime));
    }

本想测试插入五百万条数据,但是实际运行过程中太慢,中途不得不终止程序。最后得到52W数据,大约耗时两首歌的时间(7~9分钟)。随后,利用mybatis向mysql插入10000数据。

结果如下:

利用mybatis插入 一万 条数据耗时:28613,即28.6秒

第二种策略测试:

2.2 采用JDBC直接处理(开启事务、关闭事务)

采用JDBC直接处理的策略,这里的实验内容分为开启事务、未开启事务是两种,过程均如下:

  • 利用PreparedStatment预编译

  • 循环,插入对应数据,并存入

事务对于插入数据有多大的影响呢? 看下面的实验结果:

//该代码为开启事务
 private long begin = 33112001;//起始id
    private long end = begin+100000;//每次循环插入的数据量
    private String url = "jdbc:mysql://localhost:3306/bigdata?useServerPrepStmts=false&rewriteBatchedStatements=true&useUnicode=true&amp;characterEncoding=UTF-8";
    private String user = "root";
    private String password = "0203";
 
 
@org.junit.Test
    public void insertBigData3() {
        //定义连接、statement对象
        Connection conn = null;
        PreparedStatement pstm = null;
        try {
            //加载jdbc驱动
            Class.forName("com.mysql.jdbc.Driver");
            //连接mysql
            conn = DriverManager.getConnection(url, user, password);
             //将自动提交关闭
             conn.setAutoCommit(false);
            //编写sql
            String sql = "INSERT INTO person VALUES (?,?,?,?,?,?,?)";
            //预编译sql
            pstm = conn.prepareStatement(sql);
            //开始总计时
            long bTime1 = System.currentTimeMillis();
            
            //循环10次,每次一万数据,一共10万
            for(int i=0;i<10;i++) {
                //开启分段计时,计1W数据耗时
                long bTime = System.currentTimeMillis();
                //开始循环
                while (begin < end) {
                    //赋值
                    pstm.setLong(1, begin);
                    pstm.setString(2, RandomValue.getChineseName());
                    pstm.setString(3, RandomValue.name_sex);
                    pstm.setInt(4, RandomValue.getNum(1, 100));
                    pstm.setString(5, RandomValue.getEmail(4, 15));
                    pstm.setString(6, RandomValue.getTel());
                    pstm.setString(7, RandomValue.getRoad());
                    //执行sql
                    pstm.execute();
                    begin++;
                }
                //提交事务
                conn.commit();
                //边界值自增10W
                end += 10000;
                //关闭分段计时
                long eTime = System.currentTimeMillis();
                //输出
                System.out.println("成功插入1W条数据耗时:"+(eTime-bTime));
            }
            //关闭总计时
            long eTime1 = System.currentTimeMillis();
            //输出
            System.out.println("插入10W数据共耗时:"+(eTime1-bTime1));
        } catch (SQLException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e1) {
            e1.printStackTrace();
        }
    }

1、我们首先利用上述代码测试无事务状态下,插入10W条数据需要耗时多少。

如图:

成功插入1W条数据耗时:21603
成功插入1W条数据耗时:20537
成功插入1W条数据耗时:20470
成功插入1W条数据耗时:21160
成功插入1W条数据耗时:23270
成功插入1W条数据耗时:21230
成功插入1W条数据耗时:20372
成功插入1W条数据耗时:22608
成功插入1W条数据耗时:20361
成功插入1W条数据耗时:20494
插入10W数据共耗时:212106

实验结论如下:

在未开启事务的情况下,平均每 21.2 秒插入 一万 数据。

接着我们测试开启事务后,插入十万条数据耗时,如图:

成功插入1W条数据耗时:4938
成功插入1W条数据耗时:3518
成功插入1W条数据耗时:3713
成功插入1W条数据耗时:3883
成功插入1W条数据耗时:3872
成功插入1W条数据耗时:3873
成功插入1W条数据耗时:3863
成功插入1W条数据耗时:3819
成功插入1W条数据耗时:3933
成功插入1W条数据耗时:3811
插入10W数据共耗时:39255

实验结论如下:

开启事务后,平均每 3.9 秒插入 一万 数据

第三种策略测试:

2.3 采用JDBC批处理(开启事务、无事务)

采用JDBC批处理时需要注意一下几点:

1、在URL连接时需要开启批处理、以及预编译

String url = “jdbc:mysql://localhost:3306/User?rewriteBatched
-Statements=true&useServerPrepStmts=false”;

2、PreparedStatement预处理sql语句必须放在循环体外

代码如下:

private long begin = 33112001;//起始id
private long end = begin+100000;//每次循环插入的数据量
private String url = "jdbc:mysql://localhost:3306/bigdata?useServerPrepStmts=false&rewriteBatchedStatements=true&useUnicode=true&amp;characterEncoding=UTF-8";
private String user = "root";
private String password = "0203";


@org.junit.Test
public void insertBigData() {
    //定义连接、statement对象
    Connection conn = null;
    PreparedStatement pstm = null;
    try {
        //加载jdbc驱动
        Class.forName("com.mysql.jdbc.Driver");
        //连接mysql
        conn = DriverManager.getConnection(url, user, password);
  //将自动提交关闭
  // conn.setAutoCommit(false);
        //编写sql
        String sql = "INSERT INTO person VALUES (?,?,?,?,?,?,?)";
        //预编译sql
        pstm = conn.prepareStatement(sql);
        //开始总计时
        long bTime1 = System.currentTimeMillis();

        //循环10次,每次十万数据,一共1000万
        for(int i=0;i<10;i++) {

            //开启分段计时,计1W数据耗时
            long bTime = System.currentTimeMillis();
            //开始循环
            while (begin < end) {
                //赋值
                pstm.setLong(1, begin);
                pstm.setString(2, RandomValue.getChineseName());
                pstm.setString(3, RandomValue.name_sex);
                pstm.setInt(4, RandomValue.getNum(1, 100));
                pstm.setString(5, RandomValue.getEmail(4, 15));
                pstm.setString(6, RandomValue.getTel());
                pstm.setString(7, RandomValue.getRoad());
                //添加到同一个批处理中
                pstm.addBatch();
                begin++;
            }
            //执行批处理
            pstm.executeBatch();
           //提交事务
  //        conn.commit();
            //边界值自增10W
            end += 100000;
            //关闭分段计时
            long eTime = System.currentTimeMillis();
            //输出
            System.out.println("成功插入10W条数据耗时:"+(eTime-bTime));
        }
        //关闭总计时
        long eTime1 = System.currentTimeMillis();
        //输出
        System.out.println("插入100W数据共耗时:"+(eTime1-bTime1));
    } catch (SQLException e) {
        e.printStackTrace();
    } catch (ClassNotFoundException e1) {
        e1.printStackTrace();
    }
}

首先开始测试

无事务,每次循环插入10W条数据,循环10次,一共100W条数据。

结果如下图:

成功插入10W条数据耗时:3832
成功插入10W条数据耗时:1770
成功插入10W条数据耗时:2628
成功插入10W条数据耗时:2140
成功插入10W条数据耗时:2148
成功插入10W条数据耗时:1757
成功插入10W条数据耗时:1767
成功插入10W条数据耗时:1832
成功插入10W条数据耗时:1830
成功插入10W条数据耗时:2031
插入100W数据共耗时:21737

实验结果:

使用JDBC批处理,未开启事务下,平均每 2.1 秒插入 十万 条数据

接着测试

开启事务,每次循环插入10W条数据,循环10次,一共100W条数据。

结果如下图:

成功插入10W条数据耗时:3482
成功插入10W条数据耗时:1776
成功插入10W条数据耗时:1979
成功插入10W条数据耗时:1730
成功插入10W条数据耗时:1643
成功插入10W条数据耗时:1665
成功插入10W条数据耗时:1622
成功插入10W条数据耗时:1624
成功插入10W条数据耗时:1779
成功插入10W条数据耗时:1698
插入100W数据共耗时:19003

实验结果:

使用JDBC批处理,开启事务,平均每 1.9 秒插入 十万 条数据

3 总结

能够看到,在开启事务下 JDBC直接处理 和 JDBC批处理 均耗时更短。

  • Mybatis 轻量级框架插入 , mybatis在我这次实验被黑的可惨了,哈哈。实际开启事务以后,差距不会这么大(差距10倍)。大家有兴趣的可以接着去测试

  • JDBC直接处理,在本次实验,开启事务和关闭事务,耗时差距5倍左右,并且这个倍数会随着数据量的增大而增大。因为在未开启事务时,更新10000条数据,就得访问数据库10000次。导致每次操作都需要操作一次数据库。

  • JDBC批处理,在本次实验,开启事务与关闭事务,耗时差距很微小(后面会增加测试,加大这个数值的差距)。但是能够看到开启事务以后,速度还是有提升。

结论:设计到大量单条数据的插入,使用JDBC批处理和事务混合速度最快

实测使用批处理+事务混合插入1亿条数据耗时:174756毫秒

4 补充

JDBC批处理事务,开启和关闭事务,测评插入20次,一次50W数据,一共一千万数据耗时:

1、开启事务(数据太长不全贴了)

插入1000W数据共耗时:197654

2、关闭事务(数据太长不全贴了)

插入1000W数据共耗时:200540

还是没很大的差距~

借用:

分别是:

  • 不用批处理,不用事务;

  • 只用批处理,不用事务;

  • 只用事务,不用批处理;

  • 既用事务,也用批处理;(很明显,这个最快,所以建议在处理大批量的数据时,同时使用批处理和事务)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/741720.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深化校企合作,开源网安为软件安全人才培养按下“加速键”

开源网安一直以来十分重视网络安全人才的培养&#xff0c;已陆续与湖北大学、武汉工业大学、桂林电子科技大学等多所高校建立战略合作&#xff0c;打造产学研协同的多类型人才培养模式。6月29日&#xff0c;开源网安与桂林电子科技大学携手举办了软件安全开发与DevSecOps实训课…

简要介绍 | 心脏机械-电耦合理论:原理、研究现状与未来展望

注1&#xff1a;本文系“简要介绍”系列之一&#xff0c;仅从概念上对心脏机械-电耦合理论进行非常简要的介绍&#xff0c;不适合用于深入和详细的了解。 心脏机械-电耦合理论&#xff1a;原理、研究现状与未来展望 心脏中精密的血流局部调控机制&#xff1a;electro-metabolic…

使用ChatGPT进行个性化学习

推荐&#xff1a;将 NSDT场景编辑器 加入你的3D工具链 3D工具集&#xff1a; NSDT简石数字孪生 在这篇文章中&#xff0c;您将发现 ChatGPT 作为机器学习和数据科学爱好者的个人导师的好处。特别是&#xff0c;您将学习 如何让ChatGPT引导你学习抽象代数如何让 ChatGPT 帮助您…

代码随想录day9

28. 找出字符串中第一个匹配项的下标 思路&#xff1a; 没有。。。。真不会。。。。下次再来吧 代码&#xff1a; def strStr(self, haystack: str, needle: str) -> int:if not needle:return 0next [0] * len(needle)self.getNext(next, needle)j -1for i in range(…

路径规划算法:基于猎食者优化的路径规划算法- 附代码

路径规划算法&#xff1a;基于猎食者优化的路径规划算法- 附代码 文章目录 路径规划算法&#xff1a;基于猎食者优化的路径规划算法- 附代码1.算法原理1.1 环境设定1.2 约束条件1.3 适应度函数 2.算法结果3.MATLAB代码4.参考文献 摘要&#xff1a;本文主要介绍利用智能优化算法…

如何搭建自己的图床(GitHub版)

文章目录 1.图床的概念2.用GitHub创建图床服务器2.1.新建仓库2.2.生成Token令牌2.3.创建img分支和该分支下的img文件夹(可选) 3.使用PicGo软件上传图片3.1 下载PicGo软件3.2配置PicGo3.3用PicGo实现上传 4. Typora实现自动上传5.免费图片网站 前言&#xff1a; 如果没有自己的服…

暑假第六天打卡

离散&#xff1a; 极小项&#xff1a; &#xff08;1&#xff09;简单合取式 &#xff08;2&#xff09;每个字母只出现一次 &#xff08;3&#xff09;按字典顺序排列 &#xff08;4&#xff09;成真赋值&#xff0c;且化为十进制 极大项 &#xff08;1&#xff09;简单…

智能化客流系统-实时监测人流趋势,助力商场销售策略优化

随着人们对安全和便利性的要求不断提高&#xff0c;智慧客流人数管理系统的应用已经成为各类场所管理的必备工具。它可以帮助管理者实时监测人流情况&#xff0c;提供精准的服务和安全保障。 一、案例展示 智慧客流人数管理系统在图书馆的应用&#xff0c;通过实时监测和数据…

avue 表单绑定值;avue表单项根据某项的值去联动显隐或是联动下拉数据

效果&#xff1a;发布type为shp时 数据相关的都隐藏&#xff0c;当发布type为postgis时则显示 1.avue表单绑定值 html <avue-form :option"option" v-model"publishForm"></avue-form> js data中定义 data() {return {publishForm: {},optio…

移动端APP组件化架构实践 | 京东云技术团队

前言 对于中大型移动端APP开发来讲&#xff0c;组件化是一种常用的项目架构方式。个人最近几年在工作项目中也一直使用组件化的方式来开发&#xff0c;在这过程中也积累了一些经验和思考。主要是来自在日常开发中使用组件化开发遇到的问题以及和其他开发同学的交流探讨。 本文…

惊,全国快递/外卖员近1亿,程序员有多少?

最近有一组数据备受关注&#xff0c;中华全国总工会消息&#xff0c;目前&#xff0c;全国职工总数4.02亿人左右&#xff0c;新就业形态劳动者8400万人。 其中“新就业形态劳动者”主要指大家熟悉的外卖员、快递员、网约车司机、代驾司机等群体。也就是说&#xff0c;当前有近…

【Unity】 HTFramework框架(四十六)【进阶篇】运行时调试器+指令系统

更新日期&#xff1a;2023年7月10日。 Github源码&#xff1a;[点我获取源码] Gitee源码&#xff1a;[点我获取源码] 索引 运行时调试器使用运行时调试器Hierarchy窗口Inspector窗口 运行时调试器指令系统 运行时调试器 使用运行时调试器 传送门&#xff1a;【Unity】 HTFram…

如何自动生成测试用例方案,我来告诉你

目录 一、目的 二、parameters组合方法 一&#xff09;、组合分析法 二&#xff09;、正交实验设计法 三&#xff09;、两种方法的总结&#xff1a; 三、response判断 四、组装战车(自动生成用例) 一、目的 受体&#xff1a;测试经理&#xff0c;测试主管&#xff0c;质…

容器化背后的魔法之Docker底层逻辑解密

Docker内部工作原理是怎样的&#xff1f; 现在我们知道了Docker是什么以及它提供了哪些好处&#xff0c;让我们逐个重要的细节来了解。 什么是容器&#xff1f;它们是如何工作的&#xff1f; 在深入研究Docker的内部机制之前&#xff0c;我们首先要了解容器的概念。简单地说…

操作系统真象还原——第5章 保护模式进阶,向内核迈进

第5章 保护模式进阶&#xff0c;向内核迈进 BIOS中断利用0x15子功能0xe802获取内存 汇编语言子功能的调用 填写调用前相关寄存器进行int中断调用获取返回结果输出到对应寄存器的值 80286 拥有24 位地址线&#xff0c;其寻址空间是16MB 。有一些ISA 只使用15MB&#xff0c;剩下…

linux /var分区使用率高处理

某个数据库机器报/var分区使用率高 [roothydb2 ~]# df -h Filesystem Size Used Avail Use% Mounted on devtmpfs 95G 64K 95G 1% /dev tmpfs 95G 644M 94G 1% /dev/shm tmpfs …

黑马大数据学习笔记2-HDFS环境部署

目录 环境部署hadoop-3.3.4.tar.gz构建软链接配置workers文件夹配置hadoop-env.sh文件配置core-site.xml文件配置hdfs-site.xml文件准备数据目录分发Hadoop文件夹将Hadoop的一些脚本、程序配置到PATH中授权为hadoop用户格式化整个文件系统查看HDFS WEBUI保存快照 https://www.b…

三分钟查看navicat保存的密码超详细

第一步&#xff1a;打开注册表 计算机\HKEY_CURRENT_USER\SOFTWARE\PremiumSoft\Navicat\Servers\3DEV 如图所示Pwd值就是所保存的密码 Navicat针对不同的数据库&#xff0c;它所存放的地点是不一样的 MySQL&#xff1a; HKEY_CURRENT_USER\Software\PremiumSoft\Navicat\Ser…

Video Path流程学习之路

RPC RPC指远程过程调用&#xff08;Remote Procedure Call&#xff09;&#xff0c;通俗一些理解就是两台服务器A、B&#xff0c;一个应用部署在A服务器上&#xff0c;想要调用B服务器上应用提供的函数/方法&#xff0c;由于不在一个内存空间&#xff0c;不能直接调用&#xf…

go-zero学习 第三章 微服务

go-zero学习 第三章 微服务 1 相关命令2 微服务代码实战2.1 基础代码2.2 API简单调用RPC服务2.3 服务注册/发现2.4 文件上传/下载&分组2.5 go-zero超时时间2.6 grpc服务端接收请求体大小限制2.7 grpc客户端接收响应体大小限制2.8 API和RPC服务拦截器2.9 服务间通过metadata…