深入理解预训练(pre-learning)、微调(fine-tuning)、迁移学习(transfer learning)三者的联系与区别

news2025/1/10 3:43:47

1. 什么是预训练和微调

  • 你需要搭建一个网络模型来完成一个特定的图像分类的任务。首先,你需要随机初始化参数,然后开始训练网络,不断调整参数,直到网络的损失越来越小。在训练的过程中,一开始初始化的参数会不断变化。当你觉得结果很满意的时候,你就可以将训练模型的参数保存下来,以便训练好的模型可以在下次执行类似任务时获得较好的结果。这个过程就是 pre-training
  • 之后,你又接收到一个类似的图像分类的任务。这时候,你可以直接使用之前保存下来的模型的参数来作为这一任务的初始化参数,然后在训练的过程中,依据结果不断进行一些修改。这时候,你使用的就是一个 pre-trained 模型,而过程就是 fine-tuning

所以,预训练 就是指预先训练的一个模型或者指预先训练模型的过程;微调 就是指将预训练过的模型作用于自己的数据集,并使参数适应自己数据集的过程。

1.1 预训练模型

  1. 预训练模型就是已经用数据集训练好了的模型。
  2. 现在我们常用的预训练模型就是他人用常用模型,比如VGG16/19,Resnet等模型,并用大型数据集来做训练集,比如Imagenet, COCO等训练好的模型参数;
  3. 正常情况下,我们常用的VGG16/19等网络已经是他人调试好的优秀网络,我们无需再修改其网络结构。

在这里插入图片描述

2. 预训练和微调的作用

在 CNN 领域中,实际上,很少人自己从头训练一个 CNN 网络。主要原因是自己很小的概率会拥有足够大的数据集,基本是几百或者几千张,不像 ImageNet 有 120 万张图片这样的规模。拥有的数据集不够大,而又想使用很好的模型的话,很容易会造成过拟合。

所以,一般的操作都是在一个大型的数据集上(ImageNet)训练一个模型,然后使用该模型作为类似任务的初始化或者特征提取器。比如 VGG,ResNet 等模型都提供了自己的训练参数,以便人们可以拿来微调。这样既节省了时间和计算资源,又能很快的达到较好的效果。

3. 模型微调

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.1 微调的四个步骤

  1. 在源数据集(例如 ImageNet 数据集)上预训练一个神经网络模型,即源模型。

  2. 创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。

  3. 为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。

  4. 在目标数据集(例如椅子数据集)上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。

在这里插入图片描述

3.2 为什么要微调

卷积神经网络的核心是:

  1. 浅层卷积层提取基础特征,比如边缘,轮廓等基础特征。

  2. 深层卷积层提取抽象特征,比如整个脸型。

  3. 全连接层根据特征组合进行评分分类。

普通预训练模型的特点是:用了大型数据集做训练,已经具备了提取浅层基础特征和深层抽象特征的能力。

如果不做微调的话:

  1. 从头开始训练,需要大量的数据,计算时间和计算资源。
  2. 存在模型不收敛,参数不够优化,准确率低,模型泛化能力低,容易过拟合等风险。

3.3 什么情况下使用微调

  1. 要使用的数据集和预训练模型的数据集相似。如果不太相似,比如你用的预训练的参数是自然景物的图片,你却要做人脸的识别,效果可能就没有那么好了,因为人脸的特征和自然景物的特征提取是不同的,所以相应的参数训练后也是不同的。
  2. 自己搭建或者使用的CNN模型正确率太低。
  3. 数据集相似,但数据集数量太少。
  4. 计算资源太少。

不同数据集下使用微调

  • 数据集1 - 数据量少,但数据相似度非常高 - 在这种情况下,我们所做的只是修改最后几层或最终的softmax图层的输出类别。
  • 数据集2 - 数据量少,数据相似度低 - 在这种情况下,我们可以冻结预训练模型的初始层(比如k层),并再次训练剩余的(n-k)层。由于新数据集的相似度较低,因此根据新数据集对较高层进行重新训练具有重要意义。
  • 数据集3 - 数据量大,数据相似度低 - 在这种情况下,由于我们有一个大的数据集,我们的神经网络训练将会很有效。但是,由于我们的数据与用于训练我们的预训练模型的数据相比有很大不同。使用预训练模型进行的预测不会有效。因此,最好根据你的数据从头开始训练神经网络(Training from scatch)。
  • 数据集4 - 数据量大,数据相似度高 - 这是理想情况。在这种情况下,预训练模型应该是最有效的。使用模型的最好方法是保留模型的体系结构和模型的初始权重。然后,我们可以使用在预先训练的模型中的权重来重新训练该模型。

3.4 微调注意事项

  1. 通常的做法是截断预先训练好的网络的最后一层(softmax层),并用与我们自己的问题相关的新的softmax层替换它。例如,ImageNet上预先训练好的网络带有1000个类别的softmax图层。如果我们的任务是对10个类别的分类,则网络的新softmax层将由10个类别组成,而不是1000个类别。然后,我们在网络上运行预先训练的权重。确保执行交叉验证,以便网络能够很好地推广。
  2. 使用较小的学习率来训练网络。由于我们预计预先训练的权重相对于随机初始化的权重已经相当不错,我们不想过快地扭曲它们太多。通常的做法是使初始学习率比用于从头开始训练(Training from scratch)的初始学习率小10倍。
  3. 如果数据集数量过少,我们进来只训练最后一层,如果数据集数量中等,冻结预训练网络的前几层的权重也是一种常见做法。这是因为前几个图层捕捉了与我们的新问题相关的通用特征,如曲线和边。我们希望保持这些权重不变。相反,我们会让网络专注于学习后续深层中特定于数据集的特征。

4. 迁移学习

迁移学习(Transfer Learning)是机器学习中的一个名词,也可以应用到深度学习领域,是指一种学习对另一种学习的影响,或习得的经验对完成其它活动的影响。迁移广泛存在于各种知识、技能与社会规范的学习中。

通常情况下,迁移学习发生在两个任务之间,这两个任务可以是相似的,也可以是略有不同。在迁移学习中,源任务(Source Task)是已经训练好的模型的来源,目标任务(Target Task)是我们希望在其中应用迁移学习的新任务。

在这里插入图片描述

迁移学习专注于存储已有问题的解决模型,并将其利用在其他不同但相关问题上。比如说,用来辨识汽车的知识(或者是模型)也可以被用来提升识别卡车的能力。计算机领域的迁移学习和心理学常常提到的学习迁移在概念上有一定关系,但是两个领域在学术上的关系非常有限。

4.1 迁移学习的具象理解

从技术上来说,迁移学习只是一种学习的方式,一种基于以前学习的基础上继续学习的方式。但现在大家讲的最多的还是基于神经网络基础之上的迁移学习。这里我们以卷积神经网络(CNN)为例,做一个简单的介绍。

在这里插入图片描述

在CNN中,我们反复的将一张图片的局部区域卷积,减少面积,并提升通道数。

那么卷积神经网络的中间层里面到底有什么?Matthew D. Zeiler和Rob Fergus发表了一篇非常著名的论文,阐述了卷积神经网络到底看到了什么:

在这里插入图片描述

和对卷积层进行简单的成像不同,他们尝试把不同的内容输入到训练好的神经网络,并观察记录卷积核的激活值。并把造成相同卷积核较大激活的内容分组比较。上面的图片中每个九宫格为同一个卷积核对不同图片的聚类。

从上面图片中可以看到,较浅层的卷积层将较为几何抽象的内容归纳到了一起。例如第一层的卷积中,基本就是边缘检测。而在第二层的卷积中,聚类了相似的几何形状,尽管这些几何形状的内容相差甚远。

随着卷积层越来越深,所聚类的内容也越来越具体。例如在第五层里,几乎每个九宫格里都是相同类型的东西。当我们了解这些基础知识后,那么我们有些什么办法可以实现迁移学习?

其实有个最简单易行的方式已经摆在我们面前了:如果我们把卷积神经网络的前n层保留下来,剩下不想要的砍掉怎么样?就像我们可以不需要ct能识别狗,识别猫,但是轮廓的对我们还是很有帮助的。
在这里插入图片描述

4.2 迁移学习的思想

迁移学习的主要思想是通过利用源任务上学到的特征表示、模型参数或知识,来辅助目标任务的训练过程。这种迁移可以帮助解决以下问题:

  1. 数据稀缺问题:当目标任务的数据量较少时,通过迁移学习可以利用源任务上丰富的数据信息来提高对目标任务的建模能力和泛化能力。

  2. 高维输入问题:当目标任务的输入数据具有高维特征时,迁移学习可以借助已经学到的特征表示,减少目标任务中的维度灾难问题,提高处理效率和性能。

  3. 任务相似性问题:当源任务和目标任务在特征空间或输出空间上存在一定的相似性时,迁移学习可以通过共享模型参数或知识的方式,加速目标任务的学习过程,提升性能。

  4. 领域适应问题:当源任务和目标任务的数据分布存在一定的差异时,迁移学习可以通过对抗训练、领域自适应等方法,实现在不同领域之间的知识传递和迁移。

总结来说,迁移学习是一种将已经学到的知识和模型从源任务迁移到目标任务的方法。它在机器学习和深度学习中都具有重要意义,可以提高模型的泛化能力、减少训练成本,并更好地应对数据稀缺、高维输入和任务相似性等问题。

4.3 如何使用迁移学习

你可以在自己的预测模型问题上使用迁移学习。以下是两个常用的方法:

  • 开发模型的方法
  • 预训练模型的方法

开发模型的方法

  1. 选择源任务。你必须选择一个具有丰富数据的相关的预测建模问题,原任务和目标任务的输入数据、输出数据以及从输入数据和输出数据之间的映射中学到的概念之间有某种关系,
  2. 开发源模型。然后,你必须为第一个任务开发一个精巧的模型。这个模型一定要比普通的模型更好,以保证一些特征学习可以被执行。
  3. 重用模型。然后,适用于源任务的模型可以被作为目标任务的学习起点。这可能将会涉及到全部或者部分使用第一个模型,这依赖于所用的建模技术。
  4. 调整模型。模型可以在目标数据集中的输入-输出对上选择性地进行微调,以让它适应目标任务。

预训练模型方法

  1. 选择源模型。一个预训练的源模型是从可用模型中挑选出来的。很多研究机构都发布了基于超大数据集的模型,这些都可以作为源模型的备选者。
  2. 重用模型。选择的预训练模型可以作为用于第二个任务的模型的学习起点。这可能涉及到全部或者部分使用与训练模型,取决于所用的模型训练技术。
  3. 调整模型。模型可以在目标数据集中的输入-输出对上选择性地进行微调,以让它适应目标任务。

第二种类型的迁移学习在深度学习领域比较常用。

4.4 什么时候使用迁移学习?

迁移学习是一种优化,是一种节省时间或者得到更好性能的捷径。

通常而言,在模型经过开发和测试之前,并不能明显地发现使用迁移学习带来的性能提升。

Lisa Torrey 和 Jude Shavlik 在他们关于迁移学习的章节中描述了使用迁移学习的时候可能带来的三种益处:

  • 更高的起点。在微调之前,源模型的初始性能要比不使用迁移学习来的高。
  • 更高的斜率。在训练的过程中源模型提升的速率要比不使用迁移学习来得快。
  • 更高的渐进。训练得到的模型的收敛性能要比不使用迁移学习更好。

在这里插入图片描述

理想情况下,在一个成功的迁移学习应用中,你会得到上述这三种益处。

如果你能够发现一个与你的任务有相关性的任务,它具备丰富的数据,并且你也有资源来为它开发模型,那么,在你的任务中重用这个模型确实是一个好方法,或者(更好的情况),有一个可用的预训练模型,你可以将它作为你自己模型的训练初始点。

在一些问题上,你或许没有那么多的数据,这时候迁移学习可以让你开发出相对不使用迁移学习而言具有更高性能的模型。

对源数据和源模型的选择是一个开放问题,可能需要领域专家或者实际开发经验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/722959.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

prometheus进程监控配置告警及解决grafana监控面板不展示主机名问题

process_exporter进程监控及告警 监控服务器全部或某些进程是否健康,以及进程所占用资源是否异常使用process_exporter监测器进行进程信息的采集与node_exporter监测器相同,需要监测哪台服务器的进程,就将process_exporter监测器部署在哪台 安…

python提取GO信息

1.原始数据: 原始数据链接: http://current.geneontology.org/ontology/go-basic.obo原始数据样式: 2.目标格式: 3.代码: with open("go-basic.obo","r") as file:lib{}for line in file:lin…

小米面试题:Spring Boot 有哪些优点?

大家好,我是你们的小米!今天我们来聊聊在Java开发领域备受瞩目的话题——Spring Boot。作为一款快速构建Java应用程序的框架,Spring Boot凭借其独特的优点和便利性,成为了众多开发者钟爱的选择。那么,让我们一起来看看…

MySQL数据库索引机制

文章目录 一、MySQL缓冲区二、MySQL的page1.认识单个page2.认识多个页3.聚簇索引和非聚簇索引 三、索引的操作1.创建主键索引2.创建唯一索引3.创建普通索引4.查询索引的方法5.删除索引的方法6.索引创建原则 一、MySQL缓冲区 MySQL是一款有客户端和服务端的网络应用&#xff0c…

使用CMD命令如何监听1433端口,windows下对端口的基本监听操作

使用CMD命令如何监听1433端口 开始---->运行---->cmd,或者是windowR组合键,调出命令窗口 netstat -ano |find "1433" 输入 netstat ;设定参数 -ano ;输入分隔符 | ;输入参数 find ;设定要监听的…

Zabbix监控系统及安装部署

Zabbix监控系统系统及安装部署 一、Zabbix的概念二、zabbix 监控原理三、zabbix的综合对比四、Zabbix 6.0 新特性Ⅰ、Zabbix server高可用防止硬件故障或计划维护期的停机:Ⅱ、Zabbix 6.0 LTS新增Kubernetes监控功能,可以在Kubernetes系统从多个维度采集…

走进人工智能|机器人技术 人机协作新纪元

前言: 机器人技术为人类提供协助、增强生产力,改善生活质量,并推动科技进步和社会发展。 文章目录 序言背景核心技术支持人机协作新纪元目前形式领跑人困难和挑战 总结 机器人技术作为现代科技领域的重要研究方向,已经在各个领域展…

电脑Tab键有什么功能?6个实用功能总结!

我最近对电脑的键盘很有兴趣,想了解一下各个键有什么特殊的用法。今天正好看到Tab键,想问下大家知道电脑的Tab键有什么比较好用的功能吗? 在电脑键盘上,Tab键是一个常见的键,它具有多种功能和用途。无论是在文本处理、…

BOSHIDA DC电源模块如何选择定制代加工

BOSHIDA DC电源模块如何选择定制代加工 选择定制代加工DC电源模块需要考虑以下几个方面: 1. 电源模块的性能和规格:需要根据实际应用场景,确定所需的输出电压、输出电流等参数,并选择合适的电源模块类型,如开关电源模…

神经网络的量化

tinyML 的主要挑战是如何采用相对较大的神经网络(有时约为数百兆字节),并使其适合并在资源受限的微控制器上运行,同时保持最小的功耗预算。 为此,最有效的技术称为量化(quantization)。 推荐&am…

1.5 为x64dbg编写插件

任何一个成熟的软件都会具有可扩展性,可扩展性是现代软件的一个重要特征,因为它使软件更易于维护和适应变化的需求,x64dbg也不例外其可通过开发插件的方式扩展其自身功能,x64dbg提供了多种插件接口,包括脚本插件、DLL插…

基于深度学习的高精度鸡蛋检测识别系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度鸡蛋检测识别系统可用于日常生活中或野外来检测与定位鸡蛋目标,利用深度学习算法可实现图片、视频、摄像头等方式的鸡蛋目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型…

水星U3相机在Halcon里面不能使用GenICamTL库采集解决方案

在halcon里面使用采集助手,U3相机不能使用GenICamTL库实时采集。 (首先确保已经安装好水星相机驱动,如果没有安装,GenICamTL库会找不到) 查看电脑的系统环境变量,打开对应电脑位数的值。 只留下大恒水星相…

ESP32(MicroPython) TFT LCD多功能显示(RTC+DHT22)

本程序内容与之前的类似,传感器换成DHT22,测量温湿度更符合日常使用的需要。逻辑上的一项改动是测量的温度和湿度值统一保留一位小数。 代码如下 from ili934xnew import ILI9341, color565 from machine import Pin, SPI import m5stack import tt14 …

【Redis】五大数据类型

🎯Redis 数据类型 💭Redis支持五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及zset(sorted set有序集合)。 📝String(字符串) Redis的String类型是一种最基本的数据类型&…

基于OIDC的SSO单点登录

文章目录 什么是SSO(Single Sign On)单点登录OIDC(Open ID Connect)SSO服务授权流程(OIDC)授权模式授权码模式授权码模式授权流程请求授权码过程 授权模式对比总结 什么是SSO(Single Sign On&am…

Navicat 备份和恢复MongoDB库的数据

1、前期准备 (1) 有数据的MongoDB数据库old_db、空数据库new_db (2) 准备好MongoDB Tools 前往页面:https://www.mongodb.com/try/download/database-tools 选择所需版本下载并解压到自己想要的目录中: 2、将数据库old_db中的数据备份导出 (1) 对old_db…

多国卫星遥感领域工作人员和专家莅临大势智慧考察交流

7月4日下午,商务部卫星主题研修班(后简称“卫星研修班”)20余名来自多个国家的卫星遥感相关领域的工作人员和专家莅临武汉大势智慧有限公司(后简称“大势智慧”)参观考察、交流学习。大势智慧黄先锋博士陪同考察并作交…

学生用的台灯有什么讲究吗?盘点暑假适合写作业的台灯

如今青少年近视的比例越来越大,而且年龄越来越提前了,前不久经过一个小学看到二三年级就已经有孩子开始近视佩戴眼镜。其实造成近视的原因不全是读写作业时的坐姿不标准、学习时间过长、缺少户外的运动等,也包括可能灯光光源的问题造成对于视…

使用QTreeView显示指定目录中的文件,并自定义Header

这次研究了QTreeView的用法,于是想使用QTreeView显示制定目录下的所有子目录和文件。过程中,遇到了几个问题,在此记录一下同时分享给大家,如有不妥之处,还请批评指正: 设置根目录后,仍然会展示…