M-LAG(Multichassis Link Aggregation Group)即跨设备链路聚合组,是一种实现跨设备链路聚合的机制,如下图所示,将SwitchA和SwitchB通过peer-link链路连接并以同一个状态和Switch进行链路聚合协商,从而把链路可靠性从单板级提高到了设备级。
M-LAG除了具备增加带宽、提高链路可靠性、负载分担的优势外,还具备以下优势:
-
更高的可靠性:把链路可靠性从单板级提高到了设备级。
-
简化组网及配置:可以将M-LAG理解为一种横向虚拟化技术,将双归接入的两台设备在逻辑上虚拟成一台设备。M-LAG本身提供了一个没有环路的二层拓扑同时实现冗余备份,极大的简化了组网及配置。
-
独立升级:两台设备可以分别进行升级,保证有一台设备正常工作即可,对正在运行的业务几乎没有影响。
M-LAG的基本概念
如下图所示,用户侧设备Switch(可以是交换机或主机)通过M-LAG机制与另外两台设备(SwitchA和SwitchB)进行跨设备链路聚合,共同组成一个双活系统。这样可以实现SwitchA和SwitchB共同进行流量转发的功能,保证网络的可靠性。
M-LAG涉及的相关概念,如下表所示。
概念 | 说明 |
DFS Group | 动态交换服务组DFSGroup(DynamicFabricServiceGroup),主要用于部署M-LAG设备之间的配对。 M-LAG双归设备之间的接口状态,表项等信息同步需要依赖DFS Group协议进行同步。 |
DFS主设备 | 部署M-LAG且状态为主的设备,通常也称为M-LAG主设备。 |
DFS备设备 | 部署M-LAG且状态为备的设备,通常也称为M-LAG备设备。 说明: DFS Group的角色区分为主和备,正常情况下,主设备和备设备同时进行业务流量的转发,转发行为没有区别,仅在故障场景下,主备设备的行为会有差别。 |
双主检测链路 | 双主检测链路,又称为心跳链路,是一条三层互通链路,用于M-LAG主备设备间发送双主检测报文。用于检查是否出现双主的情况。 双主检测链路可以通过外部网络承载,也可以单独配置一条三层可达的链路来作为双主检测链路。 |
peer-link链路 | peer-link链路是一条直连链路且必须做链路聚合,用于交换协商报文及传输部分流量。 |
peer-link接口 | peer-link链路两端直连的接口均为peer-link接口。接口配置为peer-link接口后,该接口上不能再配置其它业务。 |
HB DFS主设备 | 通过心跳链路来协商的状态为主的设备。 |
HB DFS备设备 | 通过心跳链路来协商的状态为备的设备。 说明: 在正常情况下,HB DFS主备状态对M-LAG的转发行为不会产生影响,仅用于二次故障恢复场景下,在原DFS主设备或备设备故障恢复且peer-link链路仍然故障时,触发HB DFS状态为备的设备上相应端口Error-Down,避免M-LAG设备在双主情况下出现的流量异常。 |
M-LAG成员接口 | M-LAG主备设备上连接用户侧主机(或交换设备)的Eth-Trunk接口。 M-LAG成员接口角色也区分主和备,与对端同步成员口信息时,状态由Down先变为Up的M-LAG成员接口成为主M-LAG成员口,对端对应的M-LAG成员口为备。 说明: 仅在M-LAG接入组播场景下,M-LAG成员接口的主备角色存在转发行为差异。 |
M-LAG协议交互原理
如下图所示,M-LAG的建立过程有如下几个步骤:
-
DFS Group配对
当设备完成M-LAG配置后,设备首先通过peer-link链路发送DFS Group的Hello报文。当设备收到对端的Hello报文后,会判断报文中携带的DFS Group编号是否和本端相同,如果两台设备的DFS Group编号相同,则两台设备DFS Group配对成功。 -
DFS Group协商主备
配对成功后,两台设备会向对端发送DFS Group的设备信息报文,设备根据报文中携带的DFS Group优先级以及系统MAC地址确定出DFS Group的主备状态。
以SwitchB为例,当SwitchB收到SwitchA发送的报文时,SwitchB会查看并记录对端信息,然后比较DFS Group的优先级,如果SwitchA的DFS Group优先级高于本端的DFS Group优先级,则确定SwitchA为DFS主设备,SwitchB为DFS备设备。如果SwitchA和SwitchB的DFS Group优先级相同,比较两台设备的MAC地址,确定MAC地址小的一端为DFS主设备。 -
M-LAG成员接口协商主备
在DFS Group协商出主备状态后,M-LAG的两台设备会通过peer-link链路发送M-LAG设备信息报文,报文中携带了M-LAG成员接口的配置信息。在成员口信息同步完成后,确定M-LAG成员接口的主备状态。
与对端同步成员口信息时,状态由Down先变为Up的M-LAG成员接口成为主M-LAG成员口,对端对应的M-LAG成员口为备,且主备状态默认不回切,即:当M-LAG成员接口状态为主的设备故障恢复后,先前由备状态升级为主状态的接口仍保持主状态,恢复故障的M-LAG成员接口状态为备。 -
双主检测
协商出M-LAG主备后,两台设备之间会通过双主检测链路按照1s的周期发送M-LAG双主检测报文,一旦设备感知peer-link故障,会按照100ms的周期发送三个双主检测链路报文,加速检测。当两台设备均能够收到对端发送的报文时,双活系统即开始正常的工作。 -
M-LAG同步信息
正常工作后,两台设备之间会通过peer-link链路发送M-LAG同步报文实时同步对端的信息,M-LAG同步报文中主要包括MAC表项、ARP以及STP等,并发送M-LAG成员端口的状态,这样任意一台设备故障都不会影响流量的转发,保证正常的业务不会中断。
M-LAG防环机制
如下图所示,从接入设备或网络侧到达M-LAG配对设备的单播流量,会优先从本地转发出去,peer-link链路一般情况下不用来转发数据流量。当流量通过peer-link链路广播到对端M-LAG设备,在peer-link链路与M-LAG成员口之间设置单方向的流量隔离,即从peer-link口进来的流量不会再从M-LAG口转发出去,所以不会形成环路,这就是M-LAG单向隔离机制。
单向隔离机制生效前提
当M-LAG两台设备协商出M-LAG主备后,系统通过M-LAG同步报文判断接入设备是否双活接入:
-
若接入设备双活接入M-LAG系统,则M-LAG两台设备下发对应M-LAG成员口的单向隔离配置,来隔离由peer-link口发往M-LAG成员口的流量。
说明:
M-LAG防环机制中的单向隔离对二层(包括单播、组播、广播)流量生效,三层组播流量生效,三层单播流量不生效。
-
若接入设备单归接入M-LAG系统,则M-LAG系统不会下发对应M-LAG成员口的单向隔离配置。
单向隔离机制实现原理
如下图所示,在设备双活接入M-LAG场景下,设备会默认按下列顺序下发全局ACL配置:
-
Rule1:允许通过源端口为peer-link接口,目的端口为M-LAG成员口的三层单播报文;
-
Rule2:拒绝通过源端口为peer-link接口,目的端口为M-LAG成员口的所有报文;
当M-LAG设备感知到本端的M-LAG成员口状态为Down时,会通过peer-link发送M-LAG同步报文,通知对端设备撤销自动下发的相应的M-LAG成员端口的单向隔离ACL规则组。
M-LAG配置一致性检查
M-LAG运用于企业网中时,面临一个突出的问题:部署企业网数据中心时,通过手工配置、人工比对来保证每一个M-LAG系统两端设备的配置一致性,不仅处理效率低下,更多的是带来诸多潜在的误配置风险。
为了解决上述问题,华为公司提出了M-LAG配置一致性检查的解决方案。该解决方案中,通过M-LAG机制自带的配置一致性检查功能,去订阅M-LAG系统两端设备的各模块配置。通过检查功能返回的比对结果,及时地调整M-LAG两端设备的配置部署,防止组网成环或者数据丢包等问题发生。
M-LAG配置一致性检查将设备配置分为两类,分别为关键配置(Type 1)和一般配置(Type 2)。根据对关键配置检查不一致时的处理方式,M-LAG一致性又分为严格模式(strict)和松散模式(loose)。
-
关键配置(Type 1):如果在M-LAG系统两端设备不一致,会导致成环、状态正常但长时间丢包等问题。
严格模式下,如果M-LAG两端设备存在Type 1配置不一致,会导致M-LAG备设备上成员口处于ERROR DOWN状态,且触发设备对Type 1类型配置检查不一致的告警。
松散模式下,如果M-LAG两端设备存在Type 1配置不一致,则会触发设备对两种类型配置检查不一致的告警。
-
一般配置(Type 2):如果在M-LAG系统两端设备不一致,可能会导致M-LAG运行状态异常。与Type 1类型的配置相比较而言,Type 2类型的配置问题更容易被发现,对组网环境的影响也相对较小。
无论处于何种模式,如果M-LAG两端设备存在以下Type 2配置不一致,只会触发设备对两种类型配置检查不一致的告警。
M-LAG正常工作场景流量转发
单播流量转发
单播流量转发包括二层已知单播转发和三层单播转发。如下图所示,M-LAG双活系统在接入设备双归接入场景下的已知单播流量转发:
对于南北向单播流量,在M-LAG接入侧,M-LAG的成员设备接收到接入设备通过链路捆绑负载分担发送的流量后,共同进行流量转发。到达M-LAG主备设备发往网络侧的流量则根据路由表转发流量。
对于东西向单播流量,在全部组建M-LAG,没有孤立端口的场景下,二层流量通过M-LAG本地优先转发,三层流量通过双活网关转发,都不经过peer-Link链路,直接由M-LAG主备设备转发至对应成员口。
组播流量转发
M-LAG接入二层网络
M-LAG上行接入二层网络,那么二层网络必须要保证发往M-LAG的流量只有一份,否则会有成环的风险。如下图所示,假设右侧M-LAG上行接口被STP协议阻塞:
-
在ServerB作为组播源、ServerA作为组播组成员时,M-LAG主备都可以转发组播流量,在网络侧只引流一份流量的情况下,接收到流量的设备直接转发到本地的M-LAG成员口
-
在ServerA作为组播源、ServerB作为组播组成员时,组播源的流量通过负载分担发送至M-LAG主备设备,由于右端M-LAG设备的上行接口被阻塞,那么右端设备的组播出接口指向peer-link链路。
如果本地M-LAG成员口故障,则组播流量如下图所示会从peer-link绕行,转发至M-LAG系统另一台设备的成员口进行转发。
M-LAG接入三层网络
M-LAG上行接入三层网络,M-LAG系统成员设备需要支持二三层组播混跑。如下图所示,M-LAG双活系统在接入设备双归接入场景下的组播流量转发:
在ServerB作为组播源、ServerA作为组播组成员时,M-LAG主备设备都从组播源引流,且按照以下规则由M-LAG主备设备在本地查找组播表后将流量负载分担转发至组播组成员:
-
若组播组地址最后一位为奇数(例如225.1.1.1或FF1E::1、FF1E::B),则由M-LAG成员口状态为主的设备转发至组播组成员;
-
若组播组地址最后一位为偶数(例如225.1.1.2或FF1E::2、FF1E::A),则由M-LAG成员口状态为备的设备转发至组播组成员;
在ServerA作为组播源、ServerB作为组播组成员,且M-LAG设备无下挂其他组播组成员时,组播源发出的流量负载分担到M-LAG系统主备设备,收到流量后在本地查找组播表将报文发送出去。
区别于单播流量,M-LAG系统在转发组播流量时需要在M-LAG两台设备间配置一条独立三层链路。因为在故障场景下,可能出现网络侧只有单链路上行,此时M-LAG主备设备间部署一条独立的单独L3链路可以用来传输组播报文。如下图所示,在网络侧链路连接M-LAG备设备场景下,由peer-link接口转发的组播报文由于单向隔离无法转发至指定的M-LAG成员口,组播地址最后一位为奇数的组播报文是无法通过peer-link链路绕行至M-LAG成员口状态为主的设备,只能由独立三层链路转发至该设备。
广播流量转发
M-LAG接入二层网络
M-LAG上行接入二层网络,那么二层网络必须要保证发往M-LAG的流量只有一份,否则会有成环的风险。此处以M-LAG主设备的转发为例,如下图所示,假设右侧M-LAG上行接口被STP协议阻塞,M-LAG主设备收到广播流量后向各个下一跳转发,当流量到达M-LAG备设备时,由于peer-link与M-LAG成员接口存在单向隔离机制,到达备设备的流量不会向S-1转发。
M-LAG接入三层网络
以M-LAG备设备的转发为例,如下图所示,M-LAG备设备收到广播流量后向各个下一跳转发,当流量到达M-LAG主设备时,由于peer-link与M-LAG成员接口存在单向隔离机制,到达主设备的流量不会向S-1转发。
M-LAG故障场景流量转发
上行链路故障
如下图所示,M-LAG接入普通以太网场景,由于M-LAG主设备的上行链路故障,通过M-LAG主设备的流量均经过peer-link链路进行转发。
当故障的上行链路恰好为双主检测链路,此时对于M-LAG正常工作没有影响。一旦peer-link也发生故障,M-LAG出现双主冲突,双主检测又无法进行,则会出现丢包现象。
M-LAG接入三层网络场景下,需要在M-LAG主备设备间配置直连三层链路,使得到达Master设备的上行流量通过三层逃生链路到达Backup设备。
下行链路故障
当下行M-LAG成员口故障时,DFS Group主备状态不会变化,但如果故障M-LAG成员口状态为主,则备M-LAG成员口状态由备升主,流量切换到该链路上进行转发。发生故障的M-LAG成员口所在的链路状态变为Down,双归场景变为单归场景。
在M-LAG主成员口故障的同时,主设备学习到的S-1侧MAC不会被清除,直接刷新MAC表的出端口指向peer-link口,实现流量快速切换,避免未知单播泛洪。
在故障M-LAG成员口恢复后,MAC表的出端口从peer-link指向M-LAG成员口,实现流量快速切换,避免未知单播泛洪。同时,为避免M-LAG主备成员状态切换造成的某些协议振荡,设备支持M-LAG成员口状态不再回切,即由备升主的M-LAG成员口状态仍为主,原主M-LAG成员口在故障恢复后状态为备。
M-LAG设备故障
M-LAG主设备故障,M-LAG备设备将升级为主,其设备侧Eth-Trunk链路状态仍为Up,流量转发状态不变,继续转发流量。M-LAG主设备侧Eth-Trunk链路状态变为Down,双归场景变为单归场景。
如果是M-LAG备设备发生故障,M-LAG的主备状态不会发生变化,M-LAG备设备侧Eth-Trunk链路状态变为Down。M-LAG主设备侧Eth-Trunk链路状态仍为Up,流量转发状态不变,继续转发流量,双归场景变为单归场景。
M-LAG设备故障恢复时,peer-link先UP,DFS状态重新协商,M-LAG成员口恢复UP,流量恢复负载分担。M-LAG主设备恢复后设备状态仍然为主,M-LAG备设备恢复后设备状态仍然为备。
心跳链路故障
心跳链路是用来处理peer-link故障时检测M-LAG系统是否是双主,若心跳链路承载三层网络的业务,心跳故障对设备流量转发会有影响。若心跳链路承载二层业务或不承载三层业务,心跳故障对设备流量转发无影响。两种情况都会产生心跳故障告警。心跳链路故障恢复后,产生心跳故障恢复告警。
peer-link故障
缺省情况下,M-LAG应用在普通以太网络、VXLAN网络或IP网络的双归接入,peer-link故障但双主检测心跳状态正常时,会触发M-LAG备设备上除逻辑端口、管理网口、peer-link接口和堆叠口以外的其他接口处于Error-Down状态。
peer-link故障恢复时,处于Error Down状态的M-LAG接口默认将在240s后自动恢复为Up状态,处于Error Down状态的其它接口将立即自动恢复为Up状态。
M-LAG二次故障(peer-link故障+M-LAG设备故障)
如下图中2所示,在M-LAG应用于双归接入时,当peer-link故障但双主检测心跳状态正常会触发DFS备设备上某些端口处于Error-Down状态,此时DFS状态为主的设备继续工作。在该场景的基础上,若DFS状态为主的设备由于断电、主控板损坏、整机故障重启等其他故障导致主设备不能工作时,由下图中3所示,此时M-LAG主备设备皆不能正常转发流量。
在该场景下,可以借助M-LAG二次故障增强功能来实现该故障场景下业务不中断的可靠性要求。在上述场景基础下,若M-LAG已使能二次故障增强功能,则DFS状态为备的设备会借助M-LAG双主检测机制感知到DFS主设备故障(在一定周期内接收不到任何的M-LAG双主检测心跳报文)后,将升级为DFS主设备并恢复设备上处于ERROR DOWN状态的端口为Up状态,继续转发流量。
若原DFS状态为主的设备故障恢复后但peer-link故障仍故障时:
- 若配置LACP M-LAG的系统ID在一定时间内切换为本设备的LACP系统ID,则在LACP协商时接入侧仅选择上行链路中的一条链路为活动链路,实际流量转发正常。
- 若配置LACP M-LAG的系统ID为缺省情况,即系统ID不回切,M-LAG两台设备均使用同一系统ID来与接入侧设备协商,链路均能被选中成为活动链路。该场景下,由于peer-link链路仍然故障,M-LAG两端无法同步对端的优先级、系统MAC等信息,形成M-LAG两台设备双主的情况,可能导致流量异常。此时,如下图所示,可以借助心跳链路报文中携带必要的DFS Group协商主备的必要信息(如DFS Group优先级、系统MAC等)来协商M-LAG两台设备的HB DFS主备信息,触发HB DFS状态为备的设备上某些端口处于ERROR DOWN状态,HB DFS状态为主的设备继续工作。