@TOC
第一章
1.1、一般编程要解决的问题
例如,如果我们要为一台微波炉编写一个用户界面
假设我们要编写一个电子邮件客户端。
1.2、深度学习要解决的问题
例如,假设我们想要编写一个判定一张图像中有没有猫的程序。这件事听起来好像很简单,对不对?程序只需要对每张输入图像输出“真”(表示有猫)或者“假”(表示无猫)即可。但令人惊讶的是,即使是世界上最优秀的计算机科学家和程序员也不懂如何编写这样的程序。
我们该从哪里入手呢?我们先进一步简化这个问题:若假设所有图像的高和宽都是同样的400像素大小,一个像素由红绿蓝三个值构成,那么一张图像就由近50万个数值表示。那么哪些数值隐藏着我们需要的信息呢?是所有数值的平均数,还是四个角的数值,抑或是图像中的某一个特别的点?事实上,要想解读图像中的内容,需要寻找仅仅在结合成千上万的数值时才会出现的特征,如边缘、质地、形状、眼睛、鼻子等,最终才能判断图像中是否有猫。
1.3、一个解决常规编程不容易完成的任务的思路
一种解决以上问题的思路是逆向思考。与其设计一个解决问题的程序,不如从最终的需求入手来寻找一个解决方案。 事实上,这也是目前的机器学习和深度学习应用共同的核心思想:我们可以称其为“用数据编程”。 与其枯坐在房间里思考怎么设计一个识别猫的程序,不如利用人类肉眼在图像中识别猫的能力。我们可以收集一些已知包含猫与不包含猫的真实图像,然后我们的目标就转化成如何从这些图像入手得到一个可以推断出图像中是否有猫的函数。这个函数的形式通常通过我们的知识来针对特定问题选定。 例如,我们使用一个二次函数来判断图像中是否有猫,但是像二次函数系数值这样的函数参数的具体值则是通过数据来确定。
1.4、关于深度学习的一个总结
通俗来说,机器学习是一门讨论各式各样的适用于不同问题的函数形式,以及如何使用数据来有效地获取函数参数具体值的学科。 深度学习是指机器学习中的一类函数,它们的形式通常为多层神经网络。 近年来,仰仗着大数据集和强大的硬件,深度学习已逐渐成为处理图像、文本语料和声音信号等复杂高维度数据的主要方法。
1.5 起源
时至今日,绝大多数神经网络都包含以下的核心原则。
- 交替使用线性处理单元与非线性处理单元,它们经常被称为“层”。
- 使用链式法则(即反向传播)来更新网络的参数。
1.6 发展
间隔
以上列出的仅仅是近年来深度学习所取得的成果的冰山一角。机器人学、物流管理、计算生物学、粒子物理学和天文学近年来的发展也有一部分要归功于深度学习。可以看到,深度学习已经逐渐演变成一个工程师和科学家皆可使用的普适工具。
1.7 小结
- 机器学习研究如何使计算机系统利用经验改善性能。它是人工智能领域的分支,也是实现人工智能的一种手段。
- 作为机器学习的一类,表征学习关注如何自动找出表示数据的合适方式。
- 深度学习是具有多级表示的表征学习方法。它可以逐级表示越来越抽象的概念或模式。
- 深度学习所基于的神经网络模型和用数据编程的核心思想实际上已经被研究了数百年。
- 深度学习已经逐渐演变成一个工程师和科学家皆可使用的普适工具。