今日主要总结一下动态规划完全背包的一道题目,139. 单词拆分
题目:139. 单词拆分
Leetcode题目地址
题目描述:
给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。
注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
示例 1:
输入: s = “leetcode”, wordDict = [“leet”, “code”]
输出: true
解释: 返回 true 因为 “leetcode” 可以由 “leet” 和 “code” 拼接成。
示例 2:
输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
输出: true
解释: 返回 true 因为 “applepenapple” 可以由 “apple” “pen” “apple” 拼接成。
注意,你可以重复使用字典中的单词。
示例 3:
输入: s = “catsandog”, wordDict = [“cats”, “dog”, “sand”, “and”, “cat”]
输出: false
提示:
1 <= s.length <= 300
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 20
s 和 wordDict[i] 仅有小写英文字母组成
wordDict 中的所有字符串 互不相同
本题重难点
这道题的难点还是把问题转化成熟悉的背包问题!!!
题目可以这样转化:单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。拆分时可以重复使用字典中的单词,说明就是一个完全背包!
动规五部曲分析如下:
-
确定dp数组以及下标的含义
dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。 -
确定递推公式
如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。
所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。 -
dp数组如何初始化
从递归公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递归的根基,dp[0]一定要为true,否则递归下去后面都都是false了。
那么dp[0]有没有意义呢?
dp[0]表示如果字符串为空的话,说明出现在字典里。
但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。
下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。 -
确定遍历顺序
题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。
还要讨论两层for循环的前后循序。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
而本题其实我们求的是排列数,为什么呢。 拿 s = “applepenapple”, wordDict = [“apple”, “pen”] 举例。
“apple”, “pen” 是物品,那么我们要求 物品的组合一定是 “apple” + “pen” + “apple” 才能组成 “applepenapple”。
“apple” + “apple” + “pen” 或者 “pen” + “apple” + “apple” 是不可以的,那么我们就是强调物品之间顺序。
所以说,本题一定是 先遍历 背包,在遍历物品。 -
举例推导dp[i]
以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:
C++代码
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string>wordSet(wordDict.begin(), wordDict.end());
vector<bool>dp(s.size() + 1, false);
dp[0] = true;
for(int i = 1; i <= s.size(); i++){
for(int j = 0; j < i; j++){
string substr = s.substr(j, i - j);
if(wordSet.find(substr) != wordSet.end() && dp[j] == true){
dp[i] = true;
}
}
}
return dp[s.size()];
}
};
总结
动态规划
英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的
对于动态规划问题,可以拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
这篇文章主要总结了一些动态规划解决139. 单词拆分问题,依然是使用动规五部曲,做每道动态规划题目这五步都要弄清楚才能更清楚的理解题目!
判断如何初始化重要一点就是看dp是取之前状态最小值还是最大值,如果最小值就大概率INT_MAX,最大值就大概率0。
在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。
-
如果求组合数就是外层for循环遍历物品,内层for遍历背包。(也就是0-1背包一维dp数组常用写法)
-
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
本题还是强调单词之间的顺序,所以说,本题一定是 先遍历 背包,在遍历物品。
欢迎大家关注本人公众号:编程复盘与思考随笔
(关注后可以免费获得本人在csdn发布的资源源码)