GPT模型训练实践

news2025/1/12 2:55:45

一、GPT模型解释

GPT 模型是 Generative Pretrained Transformers 的缩写,是一种先进的深度学习模型,旨在生成类人文本。GPT 的三个组成部分,即 Generative、Pre-Trained 和 Transformer,其解释如下:

生成:生成模型是用于生成新数据的统计模型。这些模型可以学习数据集中变量之间的关系,以生成与原始数据集中相似的新数据点。

预训练:这些模型已经使用大型数据集进行了预训练,可以在难以训练新模型时使用。尽管预训练模型可能并不完美,但它可以节省时间并提高性能。

Transformer: Transformer 模型是 2017 年创建的人工神经网络,是最著名的能够处理文本等序列数据的深度学习模型。机器翻译和文本分类等许多任务都是使用 Transformer 模型执行的。

这些模型由 OpenAI 开发,已经经历了多次迭代:GPT-1、GPT-2、GPT-3 以及最近的 GPT-4。GPT-4在2023年3月发布,参数量已经上万亿。

下图为Transformer的发展过程。

二、Transformer模型工作机制

Transformer 的结构如下,主要有编码器-解码器组成:

其中

编码器中包含自注意力层和前馈神经网络层;

解码器包含自注意力层、编码器-解码器注意力层、前馈神经网络层三个部分。

注意,GPT只采用了解码器。

了解Transformer,需要了解什么是超参数,这也可稍后的代码实践相关:

超参数:事先设定的。Transformer典型的超参数有Token数量,词向量,位置向量,解码器层数,自注意力头数、注意力维度数、学习率等;而参数是训练过程中学到的;

在GPT中,因为没有使用编码层,所以其组成结构为:输入处理---解码器栈---输出处理,如下图:

GPT、BERT、ELMo三者对比 

三、GPT模型训练步骤

GPT模型参数的训练过程宏观上有两个大环节,先从上往下进行推理,再从下往上进行训练,具体过程为:

1、模型初始化参数随机取得;

2、计算模型输出与真实数据的差距(损失值和梯度)

3、根据损失值,反向逐层调整权重参数;

如下图:

 参数的生命周期分为三个阶段:

一、参数的产生-训练。初始通过随机产生,之后多次迭代训练,最终逼近准确值。这个过程在稍后的代码实践会有所体现。

二、参数的使用--推理。这个过程主要就是大量的矩阵计算。

三、参数微调。微调就好比给毛坯房做装修的过程,根据不同的需求采用不同的微调方法,主要的微调方法如下所示:

四、GPT模型训练实践

接下来通过代码片段展示使用 PyTorch 库和Transformer架构从头开始构建 GPT模型的步骤。该代码分为几个部分,依次执行以下任务:

  • 数据预处理:代码的第一部分对输入文本数据进行预处理,将其标记为单词列表,将每个单词编码为唯一的整数,并使用滑动窗口方法生成固定长度的序列。
  • 模型配置:这部分代码定义了GPT模型的配置参数,包括转换器层数、注意力头数量、隐藏层大小和词汇表大小。
  • 模型架构:这部分代码使用 PyTorch 模块定义了 GPT 模型的架构。该模型由一个嵌入层、后面的一堆转换器层和一个线性层组成,该线性层输出序列中下一个单词的词汇表的概率分布。
  • 训练循环:这部分代码定义了 GPT 模型的训练循环。它使用 Adam 优化器来最小化序列的预测和实际下一个单词之间的交叉熵损失。该模型根据预处理文本数据生成的批量数据进行训练。
  • 文本生成:代码的最后一部分演示了如何使用经过训练的 GPT 模型生成新文本。它使用给定的种子序列初始化上下文,并通过从模型输出的概率分布中采样来迭代生成新单词,以获取序列中的下一个单词。生成的文本被解码回单词并打印到控制台。

本次演示代码主要参考HOW TO BUILD A GPT MODEL?。 本人直接将部分代码注释合入到代码之中,方便理解,当然,要想真正去感受,建议直接利用google Colaboratory运行调试。

以下为我调试的过程,可以尝试去改改里面的超参数,感受训练的过程。

max_iters设为5000,本次迭代到4999:va loss由 4.4022 调节到 1.8239。

 

# 第一步是导入使用 PyTorch 构建神经网络所需的库,其中包括导入必要的模块和函数。
#在此代码片段中,开发人员正在导入 PyTorch 库,这是一种用于构建神经网络的流行深度学习框架。然后,开发人员从 torch 库中导入 nn 模块,其中包含用于定义和训练神经网络的类和函数。
import torch
import torch.nn as nn
from torch.nn import functional as F

# hyperparameters定义超参数,这些参数对训练和调微非常重要
# 这些参数决定模型的性能、速度和容量,可以通过变更参数来调节,比如把下面的最大迭代数max_iters = 5000 改为 max_iters = 1000,训练时间将变短
# 这些超参数的意义:
# batch_size:该参数确定训练期间将并行处理的独立序列的数量。较大的批量大小可以加快训练速度,但需要更多内存。
# block_size:此参数设置预测的最大上下文长度。GPT 模型根据作为输入接收的上下文生成预测,并且此参数设置该上下文的最大长度。
# max_iters:该参数设置GPT模型的最大训练迭代次数。
# eval_interval:该参数设置训练迭代次数,之后将评估模型的性能。
# Learning_rate:此参数确定优化器在训练期间的学习率。
# device:此参数设置将在其上训练 GPT 模型的设备(CPU 或 GPU)。
# eval_iters:该参数设置训练迭代次数,之后将评估并保存模型的性能。
# n_embd:该参数设置GPT模型的嵌入维度数。嵌入层将输入序列映射到高维空间,该参数决定该空间的大小。
# n_head:该参数设置GPT模型的多头注意力层中注意力头的数量。注意力机制允许模型关注输入序列的特定部分。
# n_layer:该参数设置GPT模型中的层数。
# dropout:该参数设置 GPT 模型的 dropout 概率。Dropout是一种正则化技术,在训练过程中随机丢弃一些神经网络的节点,以防止过度拟合。
batch_size = 16 # how many independent sequences will we process in parallel?
block_size = 32 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 100
learning_rate = 1e-3
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embd = 64
n_head = 4
n_layer = 4
dropout = 0.0
# ------------
# 读取输入文件,使用 torch.manual_seed() 为 PyTorch 的随机数生成器设置手动种子。
# 这样做是为了确保 GPT 模型的结果是可重复的。传递给 torch.manual_seed() 的参数是一个任意数字(在本例中为 1337),
# 用作随机数生成器的种子。通过设置固定种子,开发人员可以确保每次运行代码时生成相同的随机数序列,从而确保 GPT 模型在相同的数据上进行训练和测试。
torch.manual_seed(1337)
#使用 Python 的内置 open() 函数读取文本文件,并使用 read() 方法读取其内容。该文本文件包含将用于训练 GPT 模型的输入文本。
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open('input.txt', 'r', encoding='utf-8') as f:
    text = f.read()

# here are all the unique characters that occur in this text,识别文本中出现的独特字符
# 此段代码为GPT模型创建词汇表
# 首先,我们使用 set() 函数和 list() 构造函数创建文本数据中存在的唯一字符的排序列表。set() 函数返回文本中唯一元素的集合,list() 构造函数将该集合转换为列表。
# Sorted() 函数按字母顺序对列表进行排序,创建文本中存在的唯一字符的排序列表。

# 接下来,我们使用 len() 函数获取字符列表的长度。这给出了文本中唯一字符的数量,并用作 GPT 模型的词汇量大小。

# 词汇量大小是决定GPT模型容量的重要超参数。词汇量越大,模型的表达能力就越强,但也会增加模型的复杂性和训练时间。
# 词汇量的大小通常是根据输入文本的大小和要解决的问题的性质来选择的。
# 创建词汇表后,文本数据中的字符可以映射为整数值,并通过 GPT 模型生成预测。
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers,创建映射
#第一步是创建字符和整数之间的映射,这对于构建 GPT 等语言模型是必需的。
#为了使模型能够处理文本数据,它需要能够将每个字符表示为数值,这就是以下代码所完成的任务
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string

# Train and test splits 对输入数据进行编码
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data)) # first 90% will be train, rest val,90%用来训练,10%用来验证
train_data = data[:n]
val_data = data[n:]
#生成批量输入和目标数据以训练 GPT
# data loading
def get_batch(split):
    # generate a small batch of data of inputs x and targets y
    data = train_data if split == 'train' else val_data
    ix = torch.randint(len(data) - block_size, (batch_size,))
    x = torch.stack([data[i:i+block_size] for i in ix])
    y = torch.stack([data[i+1:i+block_size+1] for i in ix])
    x, y = x.to(device), y.to(device)
    return x, y

#使用预训练模型计算训练和验证数据集的平均损失
@torch.no_grad()
def estimate_loss():
    out = {}
    model.eval()
    for split in ['train', 'val']:
        losses = torch.zeros(eval_iters)
        for k in range(eval_iters):
            X, Y = get_batch(split)
            logits, loss = model(X, Y)
            losses[k] = loss.item()
        out[split] = losses.mean()
    model.train()
    return out
#在 Transformer 模型中定义自注意力机制的一个头
class Head(nn.Module):
    """ one head of self-attention """

    def __init__(self, head_size):
        super().__init__()
        self.key = nn.Linear(n_embd, head_size, bias=False)
        self.query = nn.Linear(n_embd, head_size, bias=False)
        self.value = nn.Linear(n_embd, head_size, bias=False)
        self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))

        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        B,T,C = x.shape
        k = self.key(x)   # (B,T,C)
        q = self.query(x) # (B,T,C)
        # compute attention scores ("affinities")
        wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
        wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
        wei = F.softmax(wei, dim=-1) # (B, T, T)
        wei = self.dropout(wei)
        # perform the weighted aggregation of the values
        v = self.value(x) # (B,T,C)
        out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
        return out
# 实现多头注意力机制
class MultiHeadAttention(nn.Module):
    """ multiple heads of self-attention in parallel """

    def __init__(self, num_heads, head_size):
        super().__init__()
        self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
        self.proj = nn.Linear(n_embd, n_embd)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        out = torch.cat([h(x) for h in self.heads], dim=-1)
        out = self.dropout(self.proj(out))
        return out

class FeedFoward(nn.Module):
    """ a simple linear layer followed by a non-linearity """

    def __init__(self, n_embd):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embd, 4 * n_embd),
            nn.ReLU(),
            nn.Linear(4 * n_embd, n_embd),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        return self.net(x)

class Block(nn.Module):
    """ Transformer block: communication followed by computation """

    def __init__(self, n_embd, n_head):
        # n_embd: embedding dimension, n_head: the number of heads we'd like
        super().__init__()
        head_size = n_embd // n_head
        self.sa = MultiHeadAttention(n_head, head_size)
        self.ffwd = FeedFoward(n_embd)
        self.ln1 = nn.LayerNorm(n_embd)
        self.ln2 = nn.LayerNorm(n_embd)

    def forward(self, x):
        x = x + self.sa(self.ln1(x))
        x = x + self.ffwd(self.ln2(x))
        return x
# 模型训练和文本生成
# super simple bigram model
class BigramLanguageModel(nn.Module):

    def __init__(self):
        super().__init__()
        # each token directly reads off the logits for the next token from a lookup table
        self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
        self.position_embedding_table = nn.Embedding(block_size, n_embd)
        self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
        self.ln_f = nn.LayerNorm(n_embd) # final layer norm
        self.lm_head = nn.Linear(n_embd, vocab_size)

    def forward(self, idx, targets=None):
        B, T = idx.shape

        # idx and targets are both (B,T) tensor of integers
        tok_emb = self.token_embedding_table(idx) # (B,T,C)
        pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
        x = tok_emb + pos_emb # (B,T,C)
        x = self.blocks(x) # (B,T,C)
        x = self.ln_f(x) # (B,T,C)
        logits = self.lm_head(x) # (B,T,vocab_size)

        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B*T, C)
            targets = targets.view(B*T)
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    def generate(self, idx, max_new_tokens):
        # idx is (B, T) array of indices in the current context
        for _ in range(max_new_tokens):
            # crop idx to the last block_size tokens
            idx_cond = idx[:, -block_size:]
            # get the predictions
            logits, loss = self(idx_cond)
            # focus only on the last time step
            logits = logits[:, -1, :] # becomes (B, C)
            # apply softmax to get probabilities
            probs = F.softmax(logits, dim=-1) # (B, C)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
            # append sampled index to the running sequence
            idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
        return idx

model = BigramLanguageModel()
m = model.to(device)
# print the number of parameters in the model
print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')

# create a PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

for iter in range(max_iters):

    # every once in a while evaluate the loss on train and val sets
    if iter % eval_interval == 0 or iter == max_iters - 1:
        losses = estimate_loss()
        print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")

    # sample a batch of data
    xb, yb = get_batch('train')

    # evaluate the loss
    logits, loss = model(xb, yb)
    optimizer.zero_grad(set_to_none=True)
    loss.backward()
    optimizer.step()
#从模型生成
# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=2000)[0].tolist()))

本文参考:

1、合集·GPT模型详细解释

2、HOW TO BUILD A GPT MODEL?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/706824.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【CCF计算领域学术会议介绍:2024日程安排、CCF会议deadline汇总、2022年录用率】

CCF计算领域学术会议介绍:2024日程安排、CCF会议deadline汇总、2022年录用率 0、目录 1、2024日程安排及deadline汇总2、会议介绍及2022年录用率 1、2024日程安排及deadline汇总 1、Conference List 这个网站汇总了CCF学术会议2023及即将开启的2024学术会议&…

递归:探索问题的无限深度

引言: 在计算机科学中,有一种强大的概念叫做递归。它可以帮助我们解决各种复杂的问题,使代码更加简洁而优雅。递归是一种函数调用自身的技术,通过将问题分解成较小的子问题,以及逐步将其解决,从而达到解决整…

【前端】案例1 轮播图【HTML/CSS/JS】+JQ

引入JQ <script src"https://cdn.staticfile.org/jquery/1.10.2/jquery.min.js"></script>CSS代码 /* 轮播图部分 */.two_content {width: 100%;height: 490px;position: relative;overflow: hidden;cursor: pointer;z-index: 1;}.bigimages {width: 10…

AD23 如何设置在PCB网络、原理图双击直接打开属性

概述 时间久远&#xff0c;忘记很多&#xff0c;在此做个笔录。 一、直接打开属性 1、原理图双击直接打开属性&#xff0c;在“原理图界面”。 2、PCB Layout界面双击直接打开属性&#xff0c;在“Layout界面”。 修改后&#xff0c;双击效果如下所示&#xff1a; 二、还原回去…

什么是社区数字化?数字化社区如何打造?

社区作为城市治理和民生服务的“终点站”&#xff0c;提现着基层治理规范化体系和现代化建设的能力。开利网络认为&#xff0c;建设数字化社区需要依托技术手段&#xff0c;建立线上线下相结合的便民服务圈&#xff0c;整合线上线下社区生活服务、社区治理服务和物业服务等&…

GitHub打不开的解决方案(超简单)

在国内&#xff0c;github官网经常面临打不开或访问极慢的问题&#xff0c;不挂梯子&#xff08;VPN&#xff0c;飞机&#xff0c;魔法&#xff09;使用体验极差&#xff0c;那有什么好办法解决GitHub官网访问不了的问题&#xff1f;今天小布教你几招轻松访问github官网。 git…

山西电力市场日前价格预测【2023-07-02】

日前价格预测 预测明日&#xff08;2023-07-02&#xff09;山西电力市场全天平均日前电价为387.35元/MWh。其中&#xff0c;最高日前价格为440.35元/MWh&#xff0c;预计出现在20: 45。最低日前电价为339.26元/MWh&#xff0c;预计出现在03: 30。以上预测仅供学习参考&#xff…

高效复制管理!批量覆盖同名文件轻松完成文件管理

在处理大量文件时&#xff0c;经常需要进行文件复制和管理操作。然而&#xff0c;当目标文件夹内存在同名文件时&#xff0c;手动一一覆盖操作十分繁琐。为了提高工作效率&#xff0c;我们为您提供了一种简便而高效的方法&#xff0c;让您能够轻松批量复制和管理文件&#xff0…

信号链噪声分析12

目录 概要 整体架构流程 技术名词解释 技术细节 小结 概要 提示&#xff1a;这里可以添加技术概要 本文阐释 1/f 噪声是什么&#xff0c;以及在精密测量应用中如何降低或消除该噪声。1/f 噪声无 法被滤除&#xff0c;在精密测量应用中它可能是妨碍实现优质性能的一个限制因素…

管理类联考——英语——趣味篇——词根词汇——按频次分类——高频词汇——List2

List 2 factor [ˈfktə] n.因素&#xff0c;要素 【记】 联想:fact&#xff08;事实&#xff0c;论据&#xff09;or→重要论据→要素 finding [ˈfaindiŋ] n.发现ˌ发现物&#xff1b;[pl.]调查&#xff08;研究&#xff09;结果 imply [imˈplai] vt.意指&#xff0c;含…

CCF-CSP真题《202305-1 重复局面》思路+python,c++满分题解

想查看其他题的真题及题解的同学可以前往查看&#xff1a;CCF-CSP真题附题解大全 试题编号&#xff1a;202305-1试题名称&#xff1a;重复局面时间限制&#xff1a;1.0s内存限制&#xff1a;512.0MB问题描述&#xff1a; 题目背景 国际象棋在对局时&#xff0c;同一局面连续或间…

Linux环境中grep、find、locate、whereis、who、uname、whatis、apropos八大查找命令简明教程

我是荔园微风&#xff0c;作为一名在IT界整整25年的老兵&#xff0c;今天来聊聊 Linux环境中grep、find、locate、whereis、who、uname、whatis、apropos八大查找命令简明教程。 首先解释一下里面为什么没有man&#xff0c;说实话我运维系统以后&#xff0c;几乎不用这个命令&…

Solr框架 01 Solr框架简介,安装,配置(Analysis,Dataimport)

Solr简介&#xff1a; Solr是一个高性能&#xff0c;基于Lucene的全文搜索服务器。同时对其进行了扩展&#xff0c;提供了比Lucene更为丰富的查询语言&#xff0c;同时实现了可配置、可扩展&#xff0c;并对查询性能进行了优化&#xff0c;并且提供了一个完善的功能管理界面&am…

2023年6月Web3行业月度发展报告区块链篇 | 陀螺科技会员专享

6月&#xff0c;合规与监管成为本月加密领域的主旋律&#xff0c;在海外&#xff0c;SEC接连起诉币安与Coinbase两大交易平台&#xff0c;并将除BTC、ETH、USD系等的几乎所有加密货币列为证券&#xff0c;引发市场哗然&#xff0c;行情也与之紧密关联&#xff0c;随着做市商缓慢…

threejs使用外部模型

个人博客地址: https://cxx001.gitee.io 前面我们都是用Threejs提供的几何体来创建网格&#xff0c;对于简单几何体(如球体和方块)来说非常有效&#xff0c;但当你想要创建复杂的三维模型时&#xff0c;这不是最好的方法。通常情况下&#xff0c;你可以使用三维建模工具&#…

android实现启动未声明的Activity

实现原理&#xff1a;首先创建一个占位StubActivity&#xff0c;这个Activity必须要添加声明&#xff0c;用来代替目标的Activity&#xff0c;然后在ActivityThread中的Handler回调中替换掉原来的Callback&#xff0c;改为自己的Callback&#xff0c;并在此修改成自己要启动的真…

Appium自动化测试 —— 断言

&#x1f60f;作者简介&#xff1a;博主是一位测试管理者&#xff0c;同时也是一名对外企业兼职讲师。 &#x1f4e1;主页地址&#xff1a;【Austin_zhai】 &#x1f646;目的与景愿&#xff1a;旨在于能帮助更多的测试行业人员提升软硬技能&#xff0c;分享行业相关最新信息。…

六.函数的定义与调用

目录 一.内置函数&#xff1a; 二.标准库函数 三、自定义函数 1、函数定义 2、函数调用 3、函数参数 值传递&#xff1a; 引用传值&#xff1a; 4、函数返回多个值 5、defer语句 6、init函数&#xff1a; 一.内置函数&#xff1a; Go 语言拥有一些不需要进行导入操…

实现java代码加密,jar\war加密

Springboot 项目代码加密&#xff0c;对你的代码进行加密&#xff0c;市面工具无法实现反编译。加密 Class 文件中每个方法的 Java 字节码&#xff0c;运行时在 JVM实现动态解密。 支持的部署环境Windows/Linux/macOS支持的框架SpringMVC、SpringBoot、Maven场景java加固&…

JAVA-编程基础-08-try-catch性能探究

Lsion <dreamlison163.com>, v1.0.0, 2023.04.01 JAVA-编程基础-08-try-catch性能探究 文章目录 JAVA-编程基础-08-try-catch性能探究try-catch会影响性能吗&#xff1f; try-catch会影响性能吗&#xff1f; 在 for 循环里面搞了个 try-catch&#xff0c;不知道try-cat…