Kubernetes具有以下几个重要特性
简言之,Kubernetes整合并抽象了底层的硬件和系统环境等基础设施,对外提供了一个统一的资源池供终端用户通过API进行调用。
Kubernetes具有以下几个重要特性。
(1)自动装箱
构建于容器之上,基于资源依赖及其他约束自动完成容器部署且不影响其可用性,并在同一节点通过调度机制混合运行关键型应用和
非关键型应用的工作负载,以提升资源利用率。
(2)自我修复(自愈)
支持容器故障后自动重启、节点故障后重新调度容器到其他可用节点、健康状态检查失败后关闭容器并重新创建等自我修复机制。
(3)水平扩展
支持通过简单命令或UI手动水平扩展,以及基于CPU等资源负载率的自动水平扩展机制。
(4)服务发现和负载均衡
Kubernetes通过其附加组件之一的KubeDNS(或CoreDNS)为系统内置了服务发现功能,它会为每个Service配置DNS名称,并允许集群内的客户端直接使用此名称发出访问请求,而Service通过iptables或ipvs内置了负载均衡机制。
(5)自动发布和回滚
Kubernetes支持“灰度”更新应用程序或其配置信息,它会监控更新过程中应用程序的健康状态,以确保不会在同一时刻杀掉所有实
例,而此过程中一旦有故障发生,它会立即自动执行回滚操作。
(6)密钥和配置管理
Kubernetes的ConfigMap实现了配置数据与Docker镜像解耦,需要时,仅对配置做出变更而无须重新构建Docker镜像,这为应用开发部
署提供了很大的灵活性。此外,对于应用所依赖的一些敏感数据,如用户名和密码、令牌、密钥等信息,Kubernetes专门提供了Secret对象使依赖解耦,既便利了应用的快速开发和交付,又提供了一定程度上的安全保障。
(7)存储编排
Kubernetes支持Pod对象按需自动挂载不同类型存储系统,这包括节点本地存储、公有云服务商的云存储(如AWS和GCP等),以及网络存储系统,例如NFS、iSCSI、Gluster、Ceph、Cinder和Flocker等。
(8)批量处理执行
除了服务型应用,Kubernetes还支持批处理作业、CI(持续集成),以及容器故障后恢复。另一方面,以应用为中心的Kubernetes本身并未直接提供一套完整的“开箱即用”的应用管理体系,需要基础设施工程师基于云原生社区和生态的实际需求手动构建。换句话说,在典型的生产应用场景中,Kubernetes还需要同网络、存储、遥测(监控和日志)、镜像仓库、负载均衡器、CI/CD工具链及其他服务整合,以提供完整且API风格统一的基础设施平台,如图1-17所示。