01 tcp udp使用场景
1.tcp使用场景
- 对数据安全性要求高的时候
登录数据的传输
文件传输 - http协议
传输层协议-tcp
2.udp使用场景
- 效率高-实时性要求比较高
视频聊天
通话 - 有实力的大公司
使用upd
在应用层自定义协议,做数据校验
02 广播通信流程
广播:
-
服务器
(1) 创建套接字-socket
(2) fd绑定服务器IP和端口
(3) 初始化客户端IP和端口信息
□ structsockaddr_in cli;
□ cli.sin_family = af_inet;
□ cli.port = htons(9898);
□ inet_pton(af_inet, “xxx.xxx.123.255”,&cli.adr);
(4) 发送数据
□ sendto(fd,buf, len, 0, )
(5) 设置广播权限
□ setsockopt(); -
客户端
(1) 创建套接字
(2) 显示绑定IP和端口
□ bind();
(3) 接收数据-server数据
□ recvform(); -
适用范围
□ 只适用于局域网
客户端不绑定端口的话,客户端会将信息当作垃圾信息处理。
03 广播服务器代码实现
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <arpa/inet.h>
int main(int argc, const char* argv[])
{
// 创建套接字
int fd = socket(AF_INET, SOCK_DGRAM, 0);
if(fd == -1)
{
perror("socket error");
exit(1);
}
// 绑定server的iP和端口
struct sockaddr_in serv;
memset(&serv, 0, sizeof(serv));
serv.sin_family = AF_INET;
serv.sin_port = htons(8787); // server端口
serv.sin_addr.s_addr = htonl(INADDR_ANY);
int ret = bind(fd, (struct sockaddr*)&serv, sizeof(serv));
if(ret == -1)
{
perror("bind error");
exit(1);
}
// 初始化客户端地址信息
struct sockaddr_in client;
memset(&client, 0, sizeof(client));
client.sin_family = AF_INET;
client.sin_port = htons(6767); // 客户端要绑定的端口
// 使用广播地址给客户端发数据
inet_pton(AF_INET, "192.168.123.255", &client.sin_addr.s_addr);
// 给服务器开放广播权限
int flag = 1;
setsockopt(fd, SOL_SOCKET, SO_BROADCAST, &flag, sizeof(flag));
// 通信
while(1)
{
// 一直给客户端发数据
static int num = 0;
char buf[1024] = {0};
sprintf(buf, "hello, udp == %d\n", num++);
int ret = sendto(fd, buf, strlen(buf)+1, 0, (struct sockaddr*)&client, sizeof(client));
if(ret == -1)
{
perror("sendto error");
break;
}
printf("server == send buf: %s\n", buf);
sleep(1);
}
close(fd);
return 0;
}
04 广播客户端代码实现
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <arpa/inet.h>
int main(int argc, const char* argv[])
{
int fd = socket(AF_INET, SOCK_DGRAM, 0);
if(fd == -1)
{
perror("socket error");
exit(1);
}
// 绑定iP和端口
struct sockaddr_in client;
memset(&client, 0, sizeof(client));
client.sin_family = AF_INET;
client.sin_port = htons(6767);
inet_pton(AF_INET, "0.0.0.0", &client.sin_addr.s_addr);
int ret = bind(fd, (struct sockaddr*)&client, sizeof(client));
if(ret == -1)
{
perror("bind error");
exit(1);
}
// 接收数据
while(1)
{
char buf[1024] = {0};
int len = recvfrom(fd, buf, sizeof(buf), 0, NULL, NULL);
if(len == -1)
{
perror("recvfrom error");
break;
}
printf("client == recv buf: %s\n", buf);
}
close(fd);
return 0;
}
05 组播通信流程
1.组播
- 使用范围:
局域网
Internet - 结构体
美人儿去哪
struct ip_mreqn
{
// 组播组的IP地址.
struct in_addrimr_multiaddr;
// 本地某一网络设备接口的IP地址。
struct in_addrimr_interface;
int imr_ifindex;//网卡编号
};
struct in_addr
{
in_addr_t s_addr;
};
- 组播地址
224.0.0.0~224.0.0.255
预留的组播地址(永久组地址),地址224.0.0.0保留不做分配,其它地址供路由协议使用;
224.0.1.0~224.0.1.255
公用组播地址,可以用于Internet;欲使用需申请。
224.0.2.0~238.255.255.255
用户可用的组播地址(临时组地址),全网范围内有效;
239.0.0.0~239.255.255.255
本地管理组播地址,仅在特定的本地范围内有效。
06 组播服务器代码实现
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <arpa/inet.h>
#include <net/if.h>
int main(int argc, const char* argv[])
{
// 创建套接字
int fd = socket(AF_INET, SOCK_DGRAM, 0);
if(fd == -1)
{
perror("socket error");
exit(1);
}
// 绑定server的iP和端口
struct sockaddr_in serv;
memset(&serv, 0, sizeof(serv));
serv.sin_family = AF_INET;
serv.sin_port = htons(8787); // server端口
serv.sin_addr.s_addr = htonl(INADDR_ANY);
int ret = bind(fd, (struct sockaddr*)&serv, sizeof(serv));
if(ret == -1)
{
perror("bind error");
exit(1);
}
// 初始化客户端地址信息
struct sockaddr_in client;
memset(&client, 0, sizeof(client));
client.sin_family = AF_INET;
client.sin_port = htons(6767); // 客户端要绑定的端口
// 使用组播地址给客户端发数据
inet_pton(AF_INET, "239.0.0.10", &client.sin_addr.s_addr);
// 给服务器开放组播权限
struct ip_mreqn flag;
// init flag
inet_pton(AF_INET, "239.0.0.10", &flag.imr_multiaddr.s_addr); // 组播地址
inet_pton(AF_INET, "0.0.0.0", &flag.imr_address.s_addr); // 本地IP
flag.imr_ifindex = if_nametoindex("ens33");
setsockopt(fd, IPPROTO_IP, IP_MULTICAST_IF, &flag, sizeof(flag));
// 通信
while(1)
{
// 一直给客户端发数据
static int num = 0;
char buf[1024] = {0};
sprintf(buf, "hello, udp == %d\n", num++);
int ret = sendto(fd, buf, strlen(buf)+1, 0, (struct sockaddr*)&client, sizeof(client));
if(ret == -1)
{
perror("sendto error");
break;
}
printf("server == send buf: %s\n", buf);
sleep(1);
}
close(fd);
return 0;
}
07 组播客户端代码实现
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <arpa/inet.h>
#include <net/if.h>
int main(int argc, const char* argv[])
{
int fd = socket(AF_INET, SOCK_DGRAM, 0);
if(fd == -1)
{
perror("socket error");
exit(1);
}
// 绑定iP和端口
struct sockaddr_in client;
memset(&client, 0, sizeof(client));
client.sin_family = AF_INET;
client.sin_port = htons(6767); // ........
inet_pton(AF_INET, "0.0.0.0", &client.sin_addr.s_addr);
int ret = bind(fd, (struct sockaddr*)&client, sizeof(client));
if(ret == -1)
{
perror("bind error");
exit(1);
}
// 加入到组播地址
struct ip_mreqn fl;
inet_pton(AF_INET, "239.0.0.10", &fl.imr_multiaddr.s_addr);
inet_pton(AF_INET, "0.0.0.0", &fl.imr_address.s_addr);
fl.imr_ifindex = if_nametoindex("ens33");
setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &fl, sizeof(fl));
// 接收数据
while(1)
{
char buf[1024] = {0};
int len = recvfrom(fd, buf, sizeof(buf), 0, NULL, NULL);
if(len == -1)
{
perror("recvfrom error");
break;
}
printf("client == recv buf: %s\n", buf);
}
close(fd);
return 0;
}
08 本地套接字通信流程
1.文件格式:
- 管道:p
- 套接字:s
伪文件
2.服务器端
- 创建套接字
int lfd = socket(AF_LOCAL,sock_stream, 0); - 绑定-
struct sockaddr_unserv;
serv.sun_family = af_local;
strcpy(serv.sun_path, "server.socket"); --现在还不存在
bind(lfd, (struct sockaddr8)&serv,len); ---绑定成功套接字文件被创建
- 设置监听
listen(); - 等待接收连接请求
struct sockaddr_unclient;
intlen = sizeof(client);
intcfd = accept(ldf, &client, &len);
- 通信
send
recv - 断开连接
close(cfd);
close(lfd);
3.客户端
- 创建套接字
int fd = socket(af_local,sock_stream, 0); - 绑定一个套接字文件
struct sockaddr_unclient;
client.sun_family = af_local;
strcpy(client.sun_path, "client.socket"); --现在还不存在
bind(fd, (struct sockaddr*)&client,len); ---绑定成功套接
- 连接服务器
struct sockaddr_unserv;
serv.sun_family = af_local;
strcpy(serv.sun_path, "server.socket"); --现在还不存在
connect(fd,&serv, sizeof(server));
- 通信
recv
send - 关闭
close
本地套接字和管道相似:
09 本地套接字server实现
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/un.h>
int main(int argc, const char* argv[])
{
int lfd = socket(AF_LOCAL, SOCK_STREAM, 0);
if(lfd == -1)
{
perror("socket error");
exit(1);
}
// 如果套接字文件存在, 删除套接字文件
unlink("server.sock");
// 绑定
struct sockaddr_un serv;
serv.sun_family = AF_LOCAL;
strcpy(serv.sun_path, "server.sock");
int ret = bind(lfd, (struct sockaddr*)&serv, sizeof(serv));
if(ret == -1)
{
perror("bind error");
exit(1);
}
// 监听
ret = listen(lfd, 36);
if(ret == -1)
{
perror("listen error");
exit(1);
}
// 等待接收连接请求
struct sockaddr_un client;
socklen_t len = sizeof(client);
int cfd = accept(lfd, (struct sockaddr*)&client, &len);
if(cfd == -1)
{
perror("accept error");
exit(1);
}
printf("======client bind file: %s\n", client.sun_path);
// 通信
while(1)
{
char buf[1024] = {0};
int recvlen = recv(cfd, buf, sizeof(buf), 0);
if(recvlen == -1)
{
perror("recv error");
exit(1);
}
else if(recvlen == 0)
{
printf("clietn disconnect ....\n");
close(cfd);
break;
}
else
{
printf("recv buf: %s\n", buf);
send(cfd, buf, recvlen, 0);
}
}
close(cfd);
close(lfd);
return 0;
}
10 本地套接字客户端实现
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/un.h>
int main(int argc, const char* argv[])
{
int fd = socket(AF_LOCAL, SOCK_STREAM, 0);
if(fd == -1)
{
perror("socket error");
exit(1);
}
unlink("client.sock");
// ================================
// 给客户端绑定一个套接字文件
struct sockaddr_un client;
client.sun_family = AF_LOCAL;
strcpy(client.sun_path, "client.sock");
int ret = bind(fd, (struct sockaddr*)&client, sizeof(client));
if(ret == -1)
{
perror("bind error");
exit(1);
}
// 初始化server信息
struct sockaddr_un serv;
serv.sun_family = AF_LOCAL;
strcpy(serv.sun_path, "server.sock");
// 连接服务器
connect(fd, (struct sockaddr*)&serv, sizeof(serv));
// 通信
while(1)
{
char buf[1024] = {0};
fgets(buf, sizeof(buf), stdin);
send(fd, buf, strlen(buf)+1, 0);
// 接收数据
recv(fd, buf, sizeof(buf), 0);
printf("recv buf: %s\n", buf);
}
close(fd);
return 0;
}
11 心跳包
1.判断客户端和服务器是否处于连接状态
-
心跳机制
不会携带大量的数据
每个一定时间服务器->客户端/客户端->服务器发送一个数据包 -
心跳包看成一个协议
应用层协议 -
判断网络是否断开
有多个连续的心跳包没收到/没有回复
关闭通信的套接字 -
重连
重新初始套接字
继续发送心跳包 -
乒乓包
○ 比心跳包携带的数据多一些
○ 除了知道连接是否存在,还能获取一些信息
12 epoll反应堆模型
epoll反应堆工作模式:
自己的epoll模型
在server->创建树的根节点-> 在树上添加需要监听的节点->监听读事件->有返回->通信->epoll_wait
在server->创建树的根节点-> 在树上添加需要监听的节点->监听读事件->有返回->通信(接收数据)->将这个fd 从树上删除->监听写事件->写操作->fd从树上摘下来->监听fd的读事件->epoll_wait
EPOllOUT
-
水平模式:
○tructepoll_event ev;
ev.events= EPLLOUT;
epoll_wait会一直返回,缓冲区能写数据,该函数会返回, 缓冲区满的时候, 不返回 -
边缘模式:
○第一次设置的时候epoll_wait会返回一次
○缓冲区从满->到不满的时候
epoll_loop.c:
/*
* epoll基于非阻塞I/O事件驱动
*/
#include <stdio.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#define MAX_EVENTS 1024 //监听上限数
#define BUFLEN 4096
#define SERV_PORT 8080
void recvdata(int fd, int events, void *arg);
void senddata(int fd, int events, void *arg);
/* 描述就绪文件描述符相关信息 */
struct myevent_s {
int fd; //要监听的文件描述符
int events; //对应的监听事件
void *arg; //泛型参数
void (*call_back)(int fd, int events, void *arg); //回调函数
int status; //是否在监听:1->在红黑树上(监听), 0->不在(不监听)
char buf[BUFLEN];
int len;
long last_active; //记录每次加入红黑树 g_efd 的时间值
};
int g_efd; //全局变量, 保存epoll_create返回的文件描述符
struct myevent_s g_events[MAX_EVENTS+1]; //自定义结构体类型数组. +1-->listen fd
/*将结构体 myevent_s 成员变量 初始化*/
void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg)
{
ev->fd = fd;
ev->call_back = call_back;
ev->events = 0;
ev->arg = arg;
ev->status = 0;
//memset(ev->buf, 0, sizeof(ev->buf));
//ev->len = 0;
ev->last_active = time(NULL); //调用eventset函数的时间
return;
}
/* 向 epoll监听的红黑树 添加一个 文件描述符 */
void eventadd(int efd, int events, struct myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
int op;
epv.data.ptr = ev;
epv.events = ev->events = events; //EPOLLIN 或 EPOLLOUT
if (ev->status == 1) { //已经在红黑树 g_efd 里
op = EPOLL_CTL_MOD; //修改其属性
} else { //不在红黑树里
op = EPOLL_CTL_ADD; //将其加入红黑树 g_efd, 并将status置1
ev->status = 1;
}
if (epoll_ctl(efd, op, ev->fd, &epv) < 0) //实际添加/修改
printf("event add failed [fd=%d], events[%d]\n", ev->fd, events);
else
printf("event add OK [fd=%d], op=%d, events[%0X]\n", ev->fd, op, events);
return ;
}
/* 从epoll 监听的 红黑树中删除一个 文件描述符*/
void eventdel(int efd, struct myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
if (ev->status != 1) //不在红黑树上
return ;
epv.data.ptr = ev;
ev->status = 0; //修改状态
epoll_ctl(efd, EPOLL_CTL_DEL, ev->fd, &epv); //从红黑树 efd 上将 ev->fd 摘除
return ;
}
/* 当有文件描述符就绪, epoll返回, 调用该函数 与客户端建立链接 */
// 回调函数 - 监听的文件描述符发送读事件时被调用
void acceptconn(int lfd, int events, void *arg)
{
struct sockaddr_in cin;
socklen_t len = sizeof(cin);
int cfd, i;
if ((cfd = accept(lfd, (struct sockaddr *)&cin, &len)) == -1) {
if (errno != EAGAIN && errno != EINTR) {
/* 暂时不做出错处理 */
}
printf("%s: accept, %s\n", __func__, strerror(errno));
return ;
}
do {
for (i = 0; i < MAX_EVENTS; i++) //从全局数组g_events中找一个空闲元素
if (g_events[i].status == 0) //类似于select中找值为-1的元素
break; //跳出 for
if (i == MAX_EVENTS) {
printf("%s: max connect limit[%d]\n", __func__, MAX_EVENTS);
break; //跳出do while(0) 不执行后续代码
}
int flag = 0;
if ((flag = fcntl(cfd, F_SETFL, O_NONBLOCK)) < 0) { //将cfd也设置为非阻塞
printf("%s: fcntl nonblocking failed, %s\n", __func__, strerror(errno));
break;
}
/* 给cfd设置一个 myevent_s 结构体, 回调函数 设置为 recvdata */
eventset(&g_events[i], cfd, recvdata, &g_events[i]);
eventadd(g_efd, EPOLLIN, &g_events[i]); //将cfd添加到红黑树g_efd中,监听读事件
} while(0);
printf("new connect [%s:%d][time:%ld], pos[%d]\n",
inet_ntoa(cin.sin_addr), ntohs(cin.sin_port), g_events[i].last_active, i);
return ;
}
// 回调函数 - 通信的文件描述符发生读事件时候被调用
void recvdata(int fd, int events, void *arg)
{
struct myevent_s *ev = (struct myevent_s *)arg;
int len;
len = recv(fd, ev->buf, sizeof(ev->buf), 0); //读文件描述符, 数据存入myevent_s成员buf中
eventdel(g_efd, ev); //将该节点从红黑树上摘除
if (len > 0) {
ev->len = len;
ev->buf[len] = '\0'; //手动添加字符串结束标记
printf("C[%d]:%s\n", fd, ev->buf);
eventset(ev, fd, senddata, ev); //设置该 fd 对应的回调函数为 senddata
eventadd(g_efd, EPOLLOUT, ev); //将fd加入红黑树g_efd中,监听其写事件
} else if (len == 0) {
close(ev->fd);
/* ev-g_events 地址相减得到偏移元素位置 */
printf("[fd=%d] pos[%ld], closed\n", fd, ev-g_events);
} else {
close(ev->fd);
printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
}
return;
}
// 回调函数 - 通信的文件描述符发生写事件时候被调用
void senddata(int fd, int events, void *arg)
{
struct myevent_s *ev = (struct myevent_s *)arg;
int len;
len = send(fd, ev->buf, ev->len, 0); //直接将数据 回写给客户端。未作处理
/*
printf("fd=%d\tev->buf=%s\ttev->len=%d\n", fd, ev->buf, ev->len);
printf("send len = %d\n", len);
*/
if (len > 0) {
printf("send[fd=%d], [%d]%s\n", fd, len, ev->buf);
eventdel(g_efd, ev); //从红黑树g_efd中移除
eventset(ev, fd, recvdata, ev); //将该fd的 回调函数改为 recvdata
eventadd(g_efd, EPOLLIN, ev); //从新添加到红黑树上, 设为监听读事件
} else {
close(ev->fd); //关闭链接
eventdel(g_efd, ev); //从红黑树g_efd中移除
printf("send[fd=%d] error %s\n", fd, strerror(errno));
}
return ;
}
/*创建 socket, 初始化lfd */
void initlistensocket(int efd, short port)
{
int lfd = socket(AF_INET, SOCK_STREAM, 0);
fcntl(lfd, F_SETFL, O_NONBLOCK); //将socket设为非阻塞
/* void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg); */
eventset(&g_events[MAX_EVENTS], lfd, acceptconn, &g_events[MAX_EVENTS]);
/* void eventadd(int efd, int events, struct myevent_s *ev) */
eventadd(efd, EPOLLIN, &g_events[MAX_EVENTS]);
struct sockaddr_in sin;
memset(&sin, 0, sizeof(sin)); //bzero(&sin, sizeof(sin))
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(port);
bind(lfd, (struct sockaddr *)&sin, sizeof(sin));
listen(lfd, 20);
return ;
}
int main(int argc, char *argv[])
{
unsigned short port = SERV_PORT;
if (argc == 2)
port = atoi(argv[1]); //使用用户指定端口.如未指定,用默认端口
g_efd = epoll_create(MAX_EVENTS+1); //创建红黑树,返回给全局 g_efd
if (g_efd <= 0)
printf("create efd in %s err %s\n", __func__, strerror(errno));
initlistensocket(g_efd, port); //初始化监听socket
struct epoll_event events[MAX_EVENTS+1]; //保存已经满足就绪事件的文件描述符数组
printf("server running:port[%d]\n", port);
int checkpos = 0, i;
while (1) {
/* 超时验证,每次测试100个链接,不测试listenfd 当客户端60秒内没有和服务器通信,则关闭此客户端链接 */
long now = time(NULL); //当前时间
for (i = 0; i < 100; i++, checkpos++) { //一次循环检测100个。 使用checkpos控制检测对象
if (checkpos == MAX_EVENTS)
checkpos = 0;
if (g_events[checkpos].status != 1) //不在红黑树 g_efd 上
continue;
long duration = now - g_events[checkpos].last_active; //客户端不活跃的世间
if (duration >= 60) {
close(g_events[checkpos].fd); //关闭与该客户端链接
printf("[fd=%d] timeout\n", g_events[checkpos].fd);
eventdel(g_efd, &g_events[checkpos]); //将该客户端 从红黑树 g_efd移除
}
}
/*监听红黑树g_efd, 将满足的事件的文件描述符加至events数组中, 1秒没有事件满足, 返回 0*/
int nfd = epoll_wait(g_efd, events, MAX_EVENTS+1, 1000);
if (nfd < 0) {
printf("epoll_wait error, exit\n");
break;
}
for (i = 0; i < nfd; i++) {
/*使用自定义结构体myevent_s类型指针, 接收 联合体data的void *ptr成员*/
struct myevent_s *ev = (struct myevent_s *)events[i].data.ptr;
if ((events[i].events & EPOLLIN) && (ev->events & EPOLLIN)) { //读就绪事件
ev->call_back(ev->fd, events[i].events, ev->arg);
}
if ((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT)) { //写就绪事件
ev->call_back(ev->fd, events[i].events, ev->arg);
}
}
}
/* 退出前释放所有资源 */
return 0;
}