【Java高级语法】(十七)Stream流式编程:释放流式编程的效率与优雅,狂肝万字只为全面讲透Stream流!~

news2024/11/24 20:30:14

Java高级语法详解之Stream流

  • 1️⃣ 概念及特征
  • 2️⃣ 优势和缺点
  • 3️⃣ 使用
    • 3.1 语法
    • 3.2 常用API详解
    • 3.3 案例
  • 4️⃣ 应用场景
  • 5️⃣ 使用技巧
  • 6️⃣ 并行流 ParallelStream
  • 🌾 总结

在这里插入图片描述

1️⃣ 概念及特征

Java的Stream流是在Java 8中引入的一种用于处理集合数据的功能强大且易于使用的工具,旨在简化集合框架的操作。它的设计目的是为了提供一种更简洁、更灵活和更可读的方式来处理集合数据。

在之前,我们通常使用迭代器或循环来遍历和操作集合元素,这种方式容易出错且代码冗长。Java 8通过引入Stream流来解决这个问题,提供了一种函数式编程风格的集合操作方法。

Stream流是对集合进行操作的高级抽象,可以将集合看作是一种源(source),而Stream表示这个源上进行的计算操作序列。 通过使用Stream API,我们可以以流水线方式处理数据,并进行各种转换和聚合操作。

在Java中,Stream流分为两种类型:

  • 流(Stream):表示顺序流,按照数据源的顺序进行操作,适用于串行操作。
  • 并行流(ParallelStream):表示并行流,可以同时对数据源的多个元素进行操作,适用于并行计算。

Stream流具有以下特点:

  • 流是一次性的:流不会保存元素,它仅仅描述了操作的序列,并且在执行聚合操作之后就被消耗掉了。即使我们对一个流执行多个操作,每个操作也只会在需要输出结果时才会执行,并且在执行完毕后,流不能再次使用。这与传统的集合不同,集合可以随时进行增删元素的操作;
  • 流是无状态的:流的操作不会修改原始数据结构,而是通过创建一个新的流来执行操作,并最终返回一个结果。原始数据结构保持不变。这种无状态的特性使得流操作可以并行处理数据,不用担心多线程下的数据竞争问题;
  • 流是延迟执行的:流的操作被称为延迟执行,也就是说,在流的聚合操作被触发之前,中间操作不会立即执行。这意味着我们可以先构建一个复杂的流操作链,然后在需要结果的时候才触发最终的操作。这种延迟执行的机制有助于优化性能,避免不必要的计算。

Stream流的实现原理主要基于迭代器和函数式编程的思想。在内部迭代的过程中,流通过一系列操作进行链式处理,将每个元素传递给下一个操作,并最终生成结果。

在并行流的情况下,流将输入数据分成多个小块,分配给不同的线程并行处理。处理完后,再合并结果并返回。

2️⃣ 优势和缺点

Stream流具有以下优点:

  • 简洁:使用流的聚合操作可以极大地减少代码量;
  • 高效:流的并行操作可以利用多核处理器提高运行效率;
  • 函数式编程:流的操作方法遵循函数式编程的思想,使代码更加简洁、易读和可维护;
  • 可复用:可以使用复合操作将多个流操作链在一起。

然而,Stream流也有一些缺点:

  • 可读性降低:对于复杂的操作,使用Stream可能比传统的循环方式可读性稍差;
  • 一次性使用:一旦流被使用过,就不能再次使用,需要重新创建一个新的流;
  • 可能会影响性能:虽然并行流可以提高运行效率,但在某些情况下,额外的分组和合并操作可能会造成性能下降。

3️⃣ 使用

3.1 语法

Stream提供了两种类型的操作:中间操作和终端操作。中间操作用于链式调用,并可以有多个,而终端操作是触发计算的地方。

而使用Stream主要分为三个步骤:

  • 创建流:也即获取一个Stream对象,可以通过集合、数组或者其他方式创建一个Stream。如可以使用Stream.of()方法创建流;
  • 进行中间操作:对Stream进行连续的中间操作,包括过滤、映射、排序、去重等处理。如可以使用forEach()方法遍历流中的元素,并使用filter()map()sorted()等方法对流进行操作;
  • 执行终结操作:最后使用一个终结操作来触发计算并产生结果,如收集、聚合、遍历等。如可以使用reduce()方法进行元素的归约操作,使用collect()方法进行元素的收集操作。

3.2 常用API详解

Stream API提供了丰富的操作方法,可根据不同的需求灵活选择。常用的操作API有:

  • Intermediate操作:如filter()map()sorted(),用于对元素进行筛选、映射、排序等操作。
  • Terminal操作:如forEach()count()collect(),用于对流进行最终的输出、统计和收集操作。
  • Short-circuiting操作:如findFirst()anyMatch()allMatch(),用于在满足条件时立即终止流的操作。

以下是一些Stream操作API详情列表:

类型方法作用
中间操作filter(Predicate)过滤符合条件的元素
map(Function)对每个元素应用转换函数
flatMap(Function)将每个元素转换成Stream对象,然后将所有的Stream连接成一个Stream
distinct()去除重复的元素
sorted([Comparator])排序元素,默认为自然排序
limit(n)截取指定数量的元素
skip(n)跳过指定数量的元素
peek(Consumer)对每个元素执行操作,不影响流中的其他元素
takeWhile(Predicate)从开头开始连续取元素满足指定条件,直到遇到不满足条件的元素
dropWhile(Predicate)从开头开始连续跳过元素满足指定条件,直到遇到不满足条件的元素
终结操作collect(Collector)将流转换为集合或其他数据结构
forEach(Consumer)遍历流中的元素,并对其执行操作
reduce(BinaryOperator)使用给定的二元操作符将元素归约成一个值
max([Comparator])找出流中的最大值
min([Comparator])找出流中的最小值
toArray()将流中的元素转换为数组
count()统计流中的元素数量
findFirst()返回满足条件的第一个元素
findAny()返回任意满足条件的元素
anyMatch(Predicate)判断流中是否存在任意一个元素满足给定条件
allMatch(Predicate)判断流中所有元素是否都满足给定条件
noneMatch(Predicate)判断流中是否没有任何元素满足给定条件

3.3 案例

下面是一个简单的Java程序,演示了上述所有方法的使用:

import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;

public class StreamOperationsDemo {
    public static void main(String[] args) {
        // 创建一个包含整数的集合
        List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 1, 2, 3, 4, 5);

        // filter: 过滤掉大于3的元素
        List<Integer> filteredList = numbers.stream()
                .filter(num -> num <= 3)
                .collect(Collectors.toList());
        System.out.println("Filtered List: " + filteredList);

        // map: 将每个元素乘以2
        List<Integer> mappedList = numbers.stream()
                .map(num -> num * 2)
                .collect(Collectors.toList());
        System.out.println("Mapped List: " + mappedList);
        
        // flatMap: 将每个元素转换成Stream对象,然后将所有的Stream连接成一个Stream
        List<String> words = Arrays.asList("Hello", "World");
        List<String> flatMappedList = words.stream()
                .flatMap(word -> Arrays.stream(word.split("")))
                .collect(Collectors.toList());
        System.out.println("FlatMapped List: " + flatMappedList);

        // distinct: 去除重复的元素
        List<Integer> distinctList = numbers.stream()
                .distinct()
                .collect(Collectors.toList());
        System.out.println("Distinct List: " + distinctList);

        // sorted: 对元素进行排序
        List<Integer> sortedList = numbers.stream()
                .sorted()
                .collect(Collectors.toList());
        System.out.println("Sorted List: " + sortedList);

        // limit: 截取指定数量的元素
        List<Integer> limitedList = numbers.stream()
                .limit(3)
                .collect(Collectors.toList());
        System.out.println("Limited List: " + limitedList);

        // skip: 跳过指定数量的元素
        List<Integer> skippedList = numbers.stream()
                .skip(3)
                .collect(Collectors.toList());
        System.out.println("Skipped List: " + skippedList);

        // peek: 对每个元素执行操作,不影响流中的其他元素
        List<Integer> peekedList = numbers.stream()
                .peek(num -> System.out.println("Peeking element: " + num))
                .collect(Collectors.toList());

        // takeWhile: 从开头开始连续取元素满足条件,直到遇到不满足条件的元素
        List<Integer> takenList = numbers.stream()
                .takeWhile(num -> num < 4)
                .collect(Collectors.toList());
        System.out.println("Taken List: " + takenList);

        // dropWhile: 从开头开始连续跳过元素满足条件,直到遇到不满足条件的元素
        List<Integer> droppedList = numbers.stream()
                .dropWhile(num -> num < 4)
                .collect(Collectors.toList());
        System.out.println("Dropped List: " + droppedList);

        // collect: 将流转换为集合或其他数据结构
        List<Integer> collectedList = numbers.stream()
                .collect(Collectors.toList());
        System.out.println("Collected List: " + collectedList);

        // forEach: 遍历流中的元素,并对其执行操作
        numbers.stream()
                .forEach(System.out::println);

        // reduce: 使用给定的二元操作符将元素归约成一个值
        int sum = numbers.stream()
                .reduce(0, Integer::sum);
        System.out.println("Sum: " + sum);

        // max: 找出流中的最大值
        int max = numbers.stream()
                .max(Integer::compare)
                .orElse(-1);
        System.out.println("Max: " + max);

        // min: 找出流中的最小值
        int min = numbers.stream()
                .min(Integer::compare)
                .orElse(-1);
        System.out.println("Min: " + min);

        // toArray: 将流中的元素转换为数组
        Integer[] array = numbers.stream()
                .toArray(Integer[]::new);
        System.out.println("Array: " + Arrays.toString(array));

        // count: 统计流中的元素数量
        long count = numbers.stream()
                .count();
        System.out.println("Count: " + count);

        // findFirst: 返回满足条件的第一个元素
        int first = numbers.stream()
                .findFirst()
                .orElse(-1);
        System.out.println("First: " + first);

        // findAny: 返回任意满足条件的元素
        int any = numbers.stream()
                .findAny()
                .orElse(-1);
        System.out.println("Any: " + any);

        // anyMatch: 判断流中是否存在任意一个元素满足给定条件
        boolean anyMatch = numbers.stream()
                .anyMatch(num -> num % 2 == 0);
        System.out.println("Any Match: " + anyMatch);

        // allMatch: 判断流中所有元素是否都满足给定条件
        boolean allMatch = numbers.stream()
                .allMatch(num -> num % 2 == 0);
        System.out.println("All Match: " + allMatch);

        // noneMatch: 判断流中是否没有任何元素满足给定条件
        boolean noneMatch = numbers.stream()
                .noneMatch(num -> num > 10);
        System.out.println("None Match: " + noneMatch);
    }
}

这个程序演示了如何使用Stream的中间操作和终端操作。

程序的运行结果如下:

Filtered List: [1, 2, 3, 1, 2, 3]
Mapped List: [2, 4, 6, 8, 10, 2, 4, 6, 8, 10]
FlatMapped List: [H, e, l, l, o, W, o, r, l, d]
Distinct List: [1, 2, 3, 4, 5]
Sorted List: [1, 1, 2, 2, 3, 3, 4, 4, 5, 5]
Limited List: [1, 2, 3]
Skipped List: [4, 5, 1, 2, 3, 4, 5]
Peeking element: 1
Peeking element: 2
Peeking element: 3
Peeking element: 4
Peeking element: 5
Peeking element: 1
Peeking element: 2
Peeking element: 3
Peeking element: 4
Peeking element: 5
Taken List: [1, 2, 3]
Dropped List: [4, 5, 1, 2, 3, 4, 5]
Collected List: [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
1
2
3
4
5
1
2
3
4
5
Sum: 30
Max: 5
Min: 1
Array: [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
Count: 10
First: 1
Any: 1
Any Match: true
All Match: false
None Match: true

4️⃣ 应用场景

Stream流广泛应用于数据处理、集合操作、并行计算等场景。它可以使代码更简洁、易读和具有可维护性,同时充分发挥多核处理器的计算能力。如下:

  • 数据分析:根据条件过滤出需要的数据,并进行统计、汇总或生成报表;
  • 数据处理:对大规模、复杂的数据集合进行筛选、转换、排序以及聚合和分组等;
  • 数据查询:通过多个中间操作构建复杂的查询条件,获取符合要求的数据;
  • 并行处理:在多核处理器上可利用parallel方法实现并行处理大批量数据,提高系统的处理性能。

例如,对于一个电商平台的订单数据,我们可以使用流来实现以下功能:

  • 筛选出所有金额大于1000的订单;
  • 将订单按照金额从高到低进行排序;
  • 获取前5个订单的信息;


5️⃣ 使用技巧

要使用流,首先需要从数据源创建一个流,然后通过一系列的中间操作和终端操作来对流进行处理和操作。

在使用流时,可以注意以下几点优化技巧:

  • 合理选择流的类型,根据实际情况选择顺序流或并行流,对于大数据集合,考虑使用并行流以提高性能;
  • 尽量减少中间操作的数量,合并多个操作可以减少迭代次数;
  • 尽量避免使用短路操作,以充分发挥并行流的优势;
  • 使用延迟执行的特性,只在需要获取结果时触发终端操作。

6️⃣ 并行流 ParallelStream

并行流(ParallelStream)允许在多线程环境下并发地执行操作,从而提高处理大数据集的效率。

ParallelStream类在Java中没有特有的方法。它与普通的Stream类具有相同的操作方法,可以使用 filtermapflatMapdistinctsortedlimitskippeek 等方法。这些方法可以在并行流上执行,并发地处理数据。并行流会自动将数据分成多个部分,并在多个线程上同时进行处理,加快了处理速度。

需要注意的是,在使用并行流时,应该要注意线程安全和性能问题。如果并行执行的操作具有共享状态、副作用或依赖于元素之间的顺序,那么可能会导致不正确的结果。并行流适用于对大量元素进行计算密集型操作,但并不适用于有状态或依赖前后元素的操作。因此,在使用并行流时,需要确保操作的可靠性,并在必要时使用同步措施来保证线程安全。

除了以上普通的Stream操作方法,在并行流中还可以使用.parallel().sequential()方法切换并行流和顺序流的操作模式。.parallel()方法将流转换为并行流,允许并发地对元素进行操作。而.sequential()方法则将并行流转回为顺序流,仅使用单线程顺序地处理元素。

🌾 总结

Java Stream流为我们提供了一种简洁而强大的方式来操作数据集合。它具有许多优点,如简化操作、惰性求值和并行处理。同时也有一些缺点,如学习成本稍高和可读性稍差。然而,在正确使用和优化Stream的情况下,可以极大地提高代码的可读性和维护性,并实现更高效的数据处理与计算。

通过使用流,我们可以以更直观、简洁的方式对数据进行处理和操作,并发挥多核处理器的计算能力。

然而,使用流也需要注意数据量、性能和适用场景等因素。最重要的是根据具体情况选择合适的流类型,并根据实际需求合理组合流的操作,以实现更高效、可读性更好的代码。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/685108.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

chatgpt赋能python:PythonGUI编程简介

Python GUI编程简介 Python是一款功能强大的开源编程语言&#xff0c;在很多领域都有广泛的应用。与其他编程语言相比&#xff0c;Python具有易于学习、易于阅读和易于维护等优点&#xff0c;因此成为许多程序员选择的首选语言之一。Python还提供了许多各种类型的GUI库&#x…

HHU云计算期末复习(上)Google、Amazon AWS、Azure

文章目录 第一章 概论第二章 Google 云计算2.1 Google文件系统&#xff08;GFS&#xff09;2.2 MapReduce和Hadoop2.3 分布式锁服务Chubby2.4 分布式结构化数据表Bigtable存储形式主服务器子表Bigtable 相关优化技术 2.5 分布式存储系统MegastoreMegastoreACID语义基本架构核心…

圆和矩形是否有重叠

&#x1f388; 算法并不一定都是很难的题目&#xff0c;也有很多只是一些代码技巧&#xff0c;多进行一些算法题目的练习&#xff0c;可以帮助我们开阔解题思路&#xff0c;提升我们的逻辑思维能力&#xff0c;也可以将一些算法思维结合到业务代码的编写思考中。简而言之&#…

Android设计模式—桥接模式

1.桥接模式 桥接模式是一种结构型设计模式&#xff0c;它通过将抽象部分与实现部分分离来解耦。它使用接口作为桥梁&#xff0c;将一个抽象类与其实现类的代码独立开来&#xff0c;从而使它们可以各自独立地变化。桥接模式的核心思想是“组合优于继承”。 简单来讲&#xff0…

RecyclerView性能优化之异步预加载

RecyclerView性能优化之异步预加载 前言 首先需要强调的是&#xff0c;这篇文章是对我之前写的《浅谈RecyclerView的性能优化》文章的补充&#xff0c;建议大家先读完这篇文章后再来看这篇文章&#xff0c;味道更佳。 当时由于篇幅的原因&#xff0c;并没有深入展开讲解&…

【TCP/IP】广播 - 定义、原理及编程实现

目录 广播 广播的原理及形式 广播的编程与实现 套接字选项设置 发送者 接收者 拓展资料 广播 广播(Broadcast)是指封包在计算机网络中传输时&#xff0c;目的地址为网络中所有设备的一种传输方式。这里所说的“所有设备”也被限定在一个范围之中&#xff0c;这个范围被称…

Android 13(T) - binder阅读(4)- 使用ServiceManager注册服务2

上一篇笔记我们看到了binder_transaction&#xff0c;这个方法很长&#xff0c;这一篇我们将把这个方法拆分开来看binder_transaction做了什么&#xff0c;从而学习binder是如何跨进程通信的。 1 binder_transaction static void binder_transaction(struct binder_proc *proc…

Java 面试知识点合集

一、基础篇 1.1 java基础 1.面向对象的特征&#xff1a;封装、继承、多态 (1).封装&#xff1a;属性能够描述事物的特征&#xff0c;方法能够描述事物的动作。封装就是把同一类事物的共性&#xff08;包括属性和方法&#xff09;归到同一类中&#xff0c;方便使用。 封装的…

音视频处理工具FFmpeg与Java结合的简单使用

一、什么是FFmpeg FFmpeg是一套可以用来记录、转换数字音频、视频&#xff0c;并能将其转化为流的开源计算机程序。采用LGPL或GPL许可证。它提供了录制、转换以及流化音视频的完整解决方案。它包含了非常先进的音频/视频编解码库libavcodec&#xff0c;为了保证高可移植性和编解…

chatgpt赋能python:Python编写n!——让阶乘计算变得更简单

Python编写n!——让阶乘计算变得更简单 阶乘是高中数学中常见的运算&#xff0c;它的含义是从1到n的所有正整数相乘&#xff0c;用叹号表示为n!。例如&#xff0c;5! 1 2 3 4 5 120。在计算机编程中&#xff0c;我们常常需要计算阶乘。而Python作为一门便捷易用的编程语…

chatgpt赋能python:Python编程自动化办公–提升工作效率的利器

Python编程自动化办公 – 提升工作效率的利器 越来越多企业对协作和业务流程的优化提高了要求&#xff0c;自动化办公就是其中之一&#xff0c;而Python编程能够帮助我们实现高效自动化办公。Python是一种多用途&#xff0c;高效的编程语言&#xff0c;被广泛应用于应用程序开…

UE4/5动画系列(3.通过后期处理动画蓝图的头部朝向Actor,两种方法:1.通过动画层接口的look at方法。2.通过control rig的方法)

目录 蓝图 点积dot Yaw判断 后期处理动画蓝图 动画层接口 ControlRig: 蓝图 首先我们创建一个actor类&#xff0c;这个actor类是我们要看的东西&#xff0c;actor在哪&#xff0c;我们的动物就要看到哪里&#xff08;同样&#xff0c;这个我们也是做一个父类&#xff0…

chatgpt赋能python:Python程序员的秘密武器:给不及格成绩加分

Python程序员的秘密武器&#xff1a;给不及格成绩加分 Python是一个语法简洁、易学易用的编程语言&#xff0c;已经成为了很多程序员的首选语言。在学校中&#xff0c;很多学生选择学习Python作为他们的编程课程。然而&#xff0c;有时候即便是刻苦学习&#xff0c;踏实地完成…

3D定制化开发工具HOOPS如何满足EDA设计需求?(上)

HOOPS SDK 是由 Tech Soft 3D 公司开发和提供的一款软件开发工具包。HOOPS SDK 为开发者提供了强大的3D图形渲染和交互功能&#xff0c;用于构建高性能的工程、设计和制造应用程序。其主要功能包括&#xff1a;3D 图形渲染、交互性、数据管理、算法和分析、可定制性等。 HOOPS…

chatgpt赋能python:Python编写一个可以颠倒数组元素的函数

Python编写一个可以颠倒数组元素的函数 在Python编程中&#xff0c;我们经常需要对列表&#xff08;即数组&#xff09;进行操作。其中一个常见的操作就是颠倒列表中各元素的排列顺序。这个操作在很多场景下都有用&#xff0c;例如逆序输出字符串、逆序遍历二叉树等等。在本篇…

Atlas 200I DK A2开发者套件通过路由器联网(360安全路由-V2)

一、参考资料 Windows系统 通过直连路由器连接外部网络 二、准备工作 准备micro SD存储卡&#xff0c;即TF卡&#xff0c;建议128GB以上&#xff1b;准备micro SD读卡器&#xff1b;准备普通网线一根&#xff1b;准备一个路由器&#xff0c; 360安全路由-V2路由器。 三、关键…

机器人开发--SLAM详细介绍

机器人开发--SLAM介绍 1 介绍1.1 概述1.2 发展历程三个时代重要时间节点视觉SLAM分类及里程碑技术发展 1.3 SLAM与各模块关系1.5 SLAM分类1.4 应用领域 2 SLAM框架视觉/惯性SLAM系统框架结构经典框架 3 常见方案3.1 常见激光雷达方案3.2 常见视觉方案3.3 多传感器融合方案 4 地…

chatgpt赋能python:Python中同一变量多次赋值的探讨

Python中同一变量多次赋值的探讨 介绍 Python是一种非常流行的编程语言&#xff0c;具有易于学习和使用、强大的功能和可扩展性、广泛的应用领域等众多优点。在Python中&#xff0c;我们可以对同一变量多次进行赋值&#xff0c;这在某些情况下非常有用。本文将探讨在Python中…

2.3、Bean的管理

一、Bean的装配&#xff08;IOC应用实现&#xff09; 创建应用组件之间的协作的行为通常称为装配&#xff08;wiring&#xff09;。Spring IOC通过应用上下文&#xff08;ApplicationContext&#xff09;装载Bean的定义并把他们组装起来。 Spring应用上下文&#xff08;Applica…

yum安装LNMP

目录 前言 一、yum安装要用在线yum源 二、安装Nginx 1、搭建Nginx环境 2、安装yum 3、查看Nginx是否安装成功 4、设置开机自启 三、安装MySQL 1、除系统中所有以"mariadb"开头的软件包 2、安装MySQL 3、设置开机自启 4、查看MySQL初始密码 5、修改MySQL密码…