第42步 深度学习图像识别:Mobilenet建模(Tensorflow)

news2024/11/17 21:25:48

基于WIN10的64位系统演示

一、写在前面

(1)Mobilenet

MobileNet是谷歌研究团队于2017年发布的一种轻量级的深度学习网络架构。这种架构特别适用于移动设备和嵌入式设备上,因为它的模型体积小,计算量少,但又能保持相对较高的准确率。

MobileNet的核心是使用深度可分离的卷积(depthwise separable convolution)替代了传统的卷积操作。深度可分离的卷积由两步组成:深度卷积(depthwise convolution)和逐点卷积(pointwise convolution)。深度卷积对输入的每一个通道分别进行卷积,而逐点卷积则使用1x1的卷积来改变通道数。这种操作大大降低了模型的参数数量和计算量,从而使得MobileNet在资源受限的设备上也能运行。

随着研究的深入,MobileNet已经发展出了多个版本,如MobileNetV2,MobileNetV3等,这些版本在原有基础上做出了一些改进,以进一步提升性能。例如,MobileNetV2引入了线性激活函数和残差连接的思想,而MobileNetV3则通过自动化搜索技术来优化模型架构。

(2)Mobilenet的预训练版本

Keras有Efficientnet的各种变体预训练模型,省事:

二、Efficientnet迁移学习代码实战

我们继续胸片的数据集:肺结核病人和健康人的胸片的识别。其中,肺结核病人700张,健康人900张,分别存入单独的文件夹中。使用的是Mobilenet V2这个网络。

(a)导入包

from tensorflow import keras
import tensorflow as tf
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout, Activation, Reshape, Softmax, GlobalAveragePooling2D, BatchNormalization
from tensorflow.python.keras.layers.convolutional import Convolution2D, MaxPooling2D
from tensorflow.python.keras import Sequential, initializers
from tensorflow.python.keras import Model
from tensorflow.python.keras.optimizers import adam_v2
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator, image_dataset_from_directory
from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomFlip, RandomRotation, RandomContrast, RandomZoom, RandomTranslation
import os,PIL,pathlib
import warnings
#设置GPU
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
warnings.filterwarnings("ignore")             #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号

(b)导入数据集

#1.导入数据
data_dir = "./MTB"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

batch_size = 32
img_height = 100
img_width  = 100


train_ds = image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

val_ds = image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)
print(train_ds)


#2.检查数据
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

#3.配置数据
AUTOTUNE = tf.data.AUTOTUNE

def train_preprocessing(image,label):
    return (image/255.0,label)

train_ds = (
    train_ds.cache()
    .shuffle(800)
    .map(train_preprocessing)    
    .prefetch(buffer_size=AUTOTUNE)
)

val_ds = (
    val_ds.cache()
    .map(train_preprocessing)   
    .prefetch(buffer_size=AUTOTUNE)
)

#4. 数据可视化
plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")

class_names = ["Tuberculosis","Normal"]
for images, labels in train_ds.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)

        # 显示图片
        plt.imshow(images[i])
        # 显示标签
        plt.xlabel(class_names[labels[i]-1])

plt.show()

(c)数据增强

data_augmentation = Sequential([
  RandomFlip("horizontal_and_vertical"),
  RandomRotation(0.2),
  RandomContrast(1.0),
  RandomZoom(0.5,0.2),
  RandomTranslation(0.3,0.5),
])

def prepare(ds):
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
    return ds
train_ds = prepare(train_ds)

(d)导入MobileNetV2

#获取预训练模型对输入的预处理方法
from tensorflow.python.keras.applications import mobilenet_v2
from tensorflow.python.keras import Input, regularizers
IMG_SIZE = (img_height, img_width, 3)

base_model = mobilenet_v2.MobileNetV2(input_shape=IMG_SIZE, 
                                      include_top=False, #是否包含顶层的全连接层
                                      weights='imagenet')

inputs = Input(shape=IMG_SIZE)
#模型
x = base_model(inputs, training=False) #参数不变化
#全局池化
x = GlobalAveragePooling2D()(x)
#BatchNormalization
x = BatchNormalization()(x)
#Dropout
x = Dropout(0.8)(x)
#Dense
x = Dense(128, kernel_regularizer=regularizers.l2(0.1))(x)  # 全连接层减少到128,添加 L2 正则化
#BatchNormalization
x = BatchNormalization()(x)
#激活函数
x = Activation('relu')(x)
#输出层
outputs = Dense(2, kernel_regularizer=regularizers.l2(0.1))(x)  # 添加 L2 正则化
#BatchNormalization
outputs = BatchNormalization()(outputs)
#激活函数
outputs = Activation('sigmoid')(outputs)
#整体封装
model = Model(inputs, outputs)
#打印模型结构
print(model.summary())

打印出模型的结构:

 模型很小,只是2百万的参数而已。

(e)编译模型

#定义优化器
from tensorflow.python.keras.optimizers import adam_v2, rmsprop_v2
#from tensorflow.python.keras.optimizer_v2.gradient_descent import SGD
optimizer = adam_v2.Adam()
#optimizer = SGD(learning_rate=0.001)
#optimizer = rmsprop_v2.RMSprop()
#编译模型
model.compile(optimizer=optimizer,
                loss='sparse_categorical_crossentropy',
                metrics=['accuracy'])

#训练模型
from tensorflow.python.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler

NO_EPOCHS = 50
PATIENCE  = 10
VERBOSE   = 1

# 设置动态学习率
annealer = LearningRateScheduler(lambda x: 1e-5 * 0.99 ** (x+NO_EPOCHS))

#性能不提升时,减少学习率
#reduce = ReduceLROnPlateau(monitor='val_accuracy', 
#                           patience=PATIENCE,
#                           verbose=1,
#                           factor=0.8,
#                           min_lr=1e-6)

# 设置早停
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)

# 
checkpointer = ModelCheckpoint('mtb_jet_best_model_mobilenet.h5',
                                monitor='val_accuracy',
                                verbose=VERBOSE,
                                save_best_only=True,
                                save_weights_only=True,
                                mode='max')

train_model  = model.fit(train_ds,
                  epochs=NO_EPOCHS,
                  verbose=1,
                  validation_data=val_ds,
                  callbacks=[earlystopper, checkpointer, annealer])

#保存模型
model.save('mtb_jet_best_model_mobilenet.h5')
print("The trained model has been saved.")

模型训练速度飞快!!!太快了!!!

(f)Accuracy和Loss可视化

import matplotlib.pyplot as plt

loss = train_model.history['loss']
acc = train_model.history['accuracy']
val_loss = train_model.history['val_loss']
val_acc = train_model.history['val_accuracy']
epoch = range(1, len(loss)+1)

fig, ax = plt.subplots(1, 2, figsize=(10,4))
ax[0].plot(epoch, loss, label='Train loss')
ax[0].plot(epoch, val_loss, label='Validation loss')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Loss')
ax[0].legend()
ax[1].plot(epoch, acc, label='Train acc')
ax[1].plot(epoch, val_acc, label='Validation acc')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Accuracy')
ax[1].legend()
plt.show()

观察模型训练情况:

 蓝色为训练集,橙色为验证集。可以看到,验证集不管是loss还是准确率,居然都比训练集猛。

(g)混淆矩阵可视化以及模型参数

没啥好说的,都跟之前的ML模型类似:

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.models import load_model
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math
# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions):
    
    # 生成混淆矩阵
    conf_numpy = confusion_matrix(labels, predictions)
    # 将矩阵转化为 DataFrame
    conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  
    
    plt.figure(figsize=(8,7))
    
    sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
    
    plt.title('混淆矩阵',fontsize=15)
    plt.ylabel('真实值',fontsize=14)
    plt.xlabel('预测值',fontsize=14)

val_pre   = []
val_label = []

for images, labels in val_ds:#这里可以取部分验证数据(.take(1))生成混淆矩阵
    for image, label in zip(images, labels):
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(image, 0) 
        # 使用模型预测图片中的人物
        prediction = model.predict(img_array)
        val_pre.append(np.argmax(prediction))
        val_label.append(label)

plot_cm(val_label, val_pre)

cm_val = confusion_matrix(val_label, val_pre)    
a_val = cm_val[0,0]
b_val = cm_val[0,1]
c_val = cm_val[1,0]
d_val = cm_val[1,1]
acc_val = (a_val+d_val)/(a_val+b_val+c_val+d_val) #准确率:就是被分对的样本数除以所有的样本数
error_rate_val = 1 - acc_val #错误率:与准确率相反,描述被分类器错分的比例
sen_val = d_val/(d_val+c_val) #灵敏度:表示的是所有正例中被分对的比例,衡量了分类器对正例的识别能力
sep_val = a_val/(a_val+b_val) #特异度:表示的是所有负例中被分对的比例,衡量了分类器对负例的识别能力
precision_val = d_val/(b_val+d_val) #精确度:表示被分为正例的示例中实际为正例的比例
F1_val = (2*precision_val*sen_val)/(precision_val+sen_val) #F1值:P和R指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure(又称为F-Score)
MCC_val = (d_val*a_val-b_val*c_val) / (math.sqrt((d_val+b_val)*(d_val+c_val)*(a_val+b_val)*(a_val+c_val))) #马修斯相关系数(Matthews correlation coefficient):当两个类别具有非常不同的大小时,可以使用MCC
print("验证集的灵敏度为:",sen_val, 
      "验证集的特异度为:",sep_val,
      "验证集的准确率为:",acc_val, 
      "验证集的错误率为:",error_rate_val,
      "验证集的精确度为:",precision_val, 
      "验证集的F1为:",F1_val,
      "验证集的MCC为:",MCC_val)
    
train_pre   = []
train_label = []
for images, labels in train_ds:#这里可以取部分验证数据(.take(1))生成混淆矩阵
    for image, label in zip(images, labels):
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(image, 0)
        # 使用模型预测图片中的人物
        prediction = model.predict(img_array)

        train_pre.append(np.argmax(prediction))
        train_label.append(label)
        
plot_cm(train_label, train_pre)

cm_train = confusion_matrix(train_label, train_pre)  
a_train = cm_train[0,0]
b_train = cm_train[0,1]
c_train = cm_train[1,0]
d_train = cm_train[1,1]
acc_train = (a_train+d_train)/(a_train+b_train+c_train+d_train)
error_rate_train = 1 - acc_train
sen_train = d_train/(d_train+c_train)
sep_train = a_train/(a_train+b_train)
precision_train = d_train/(b_train+d_train)
F1_train = (2*precision_train*sen_train)/(precision_train+sen_train)
MCC_train = (d_train*a_train-b_train*c_train) / (math.sqrt((d_train+b_train)*(d_train+c_train)*(a_train+b_train)*(a_train+c_train))) 
print("训练集的灵敏度为:",sen_train, 
      "训练集的特异度为:",sep_train,
      "训练集的准确率为:",acc_train, 
      "训练集的错误率为:",error_rate_train,
      "训练集的精确度为:",precision_train, 
      "训练集的F1为:",F1_train,
      "训练集的MCC为:",MCC_train)

性能很好:

 (h)AUC曲线绘制

from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.models import load_model
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math

def plot_roc(name, labels, predictions, **kwargs):
    fp, tp, _ = metrics.roc_curve(labels, predictions)

    plt.plot(fp, tp, label=name, linewidth=2, **kwargs)
    plt.plot([0, 1], [0, 1], color='orange', linestyle='--')
    plt.xlabel('False positives rate')
    plt.ylabel('True positives rate')
    ax = plt.gca()
    ax.set_aspect('equal')


val_pre_auc   = []
val_label_auc = []

for images, labels in val_ds:
    for image, label in zip(images, labels):      
        img_array = tf.expand_dims(image, 0) 
        prediction_auc = model.predict(img_array)
        val_pre_auc.append((prediction_auc)[:,1])
        val_label_auc.append(label)
auc_score_val = metrics.roc_auc_score(val_label_auc, val_pre_auc)


train_pre_auc   = []
train_label_auc = []

for images, labels in train_ds:
    for image, label in zip(images, labels):
        img_array_train = tf.expand_dims(image, 0) 
        prediction_auc = model.predict(img_array_train)
        train_pre_auc.append((prediction_auc)[:,1])#输出概率而不是标签!
        train_label_auc.append(label)
auc_score_train = metrics.roc_auc_score(train_label_auc, train_pre_auc)

plot_roc('validation AUC: {0:.4f}'.format(auc_score_val), val_label_auc , val_pre_auc , color="red", linestyle='--')
plot_roc('training AUC: {0:.4f}'.format(auc_score_train), train_label_auc, train_pre_auc, color="blue", linestyle='--')
plt.legend(loc='lower right')
#plt.savefig("roc.pdf", dpi=300,format="pdf")

print("训练集的AUC值为:",auc_score_train, "验证集的AUC值为:",auc_score_val)

ROC曲线:

 赏心悦目的曲线啊!!!

三、写在最后

真的是模型体积小,计算量少,速度快,但又能保持相对较高的准确率,特别适用于移动设备和嵌入式设备上,比如手机APP的识别软件等。

V3版本还没测试,大家可以自行食用!!!

四、Mobilenet、Efficientnet、DenseNet201、Inception V3和VGG19的对比

 

(1)参数量:模型的参数量决定了模型的复杂度,参数越多,模型越复杂,需要的计算量越大,但有可能更好地拟合复杂的数据分布。

(2)FLOPS(浮点运算次数):表示模型进行一次前向传播需要的计算量,FLOPS越大,每次推理所需的计算资源越多。

(3)ImageNet Top-1精度和Top-5精度:这是在ImageNet大规模视觉识别挑战赛(ILSVRC)中常用的性能指标,Top-1精度表示模型预测的最高得分类别与真实类别匹配的概率,Top-5精度则表示模型预测的前5个最高得分类别中包含真实类别的概率。

五、数据

链接:https://pan.baidu.com/s/15vSVhz1rQBtqNkNp2GQyVw?pwd=x3jf

提取码:x3jf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/682144.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

无人船实时路径规划与编队控制仿真研究

源自:系统仿真学报 作者:宋大雷 干文浩 许嘤枝 曲秀青 曹江丽 摘 要 安全和无碰撞导航是无人船正常航行的基础。通过Unity3D构建高保真的虚拟海洋环境,在无人船建模基础上,提出一种面向未知复杂环境的实时路径规划及编队控…

系统空间数据库设计

文章目录 1 .空间数据库2. 空间数据库实体结构属性与空间数据库关联设计 1 .空间数据库 系统空间数据库存储电力管线设备和管网各业务图的地理空间信息, GIS 服务器GeoServer 通过读取空间数据库的实体表中的空间信息确定地物类的位置和几何形状,然后将…

全志V3S嵌入式驱动开发(spi-nor image制作和烧入)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 其实,我们之前就讨论过怎么把image烧入到v3s的spi-nor当中去。当时使用的方法是借助于sunxi-fel工具,烧入的image也比计较小…

重磅:微前端与模块联邦项目落地

微前端概念及诞生背景 微前端的出现背景可以追溯到大型前端应用的开发和维护过程中所面临的挑战和问题。 大型应用的复杂性:随着前端应用规模的扩大,应用的复杂性也增加。大型应用通常由多个团队协同开发,每个团队负责一部分功能模块&#x…

干货 | 智能网联车个人数据流通安全要求

以下内容整理自清华大学《数智安全与标准化》课程大作业期末报告同学的汇报内容。 我们对相关已有的标准规范进行调研,在工业和信息化部办公厅印发的《车联网网络安全和数据安全标准体系建设指南》中规定了六个部分的安全要求,我们做的主要是个人信息保护…

MaskFormer:将语义分割和实例分割作为同一任务进行训练

目标检测和实例分割是计算机视觉的基本任务,在从自动驾驶到医学成像的无数应用中发挥着关键作用。目标检测的传统方法中通常利用边界框技术进行对象定位,然后利用逐像素分类为这些本地化实例分配类。但是当处理同一类的重叠对象时,或者在每个…

c++11 标准模板(STL)(std::basic_streambuf)(五)

定义于头文件 <streambuf> template< class CharT, class Traits std::char_traits<CharT> > class basic_streambuf; 类 basic_streambuf 控制字符序列的输入与输出。它包含下列内容并提供到它们的访问&#xff1a; 1) 受控制字符序列&#xff…

【探索 Kubernetes|作业管理篇 系列 13】StatefulSet 拓扑状态

前言 大家好&#xff0c;我是秋意零。 在上一篇中&#xff0c;我们讲解了 Deployment 这种无状态的控制器&#xff1b;而如果要部署有状态的应用&#xff0c;那么 Deployment 显然是达不到我们的需求的。 今天讲解的是 StatefulSet 有状态控制器。 最近搞了一个扣扣群&…

电气照明节能设计在智能控制系统中的应用

【摘要】&#xff1a;随着社会的不断发展&#xff0c;经济水平也随之稳步提升&#xff0c;人们的消防意识也正在逐步加强&#xff0c;这就促进了消防应急照明系统的发展。当今社会,智能照明系统已经普及到家家户户&#xff0c;并在建筑工程中被广泛应用&#xff0c;同时其自身具…

【计算机网络自顶向下】计算机网络期末自测题(一)

前言 “(学不懂一点) &#xff08;阴暗的爬行&#xff09;&#xff08;尖叫&#xff09;&#xff08;扭曲&#xff09;&#xff08;阴暗的爬行&#xff09;&#xff08;尖叫&#xff09;&#xff08;扭曲&#xff09;&#xff08;阴暗的爬行&#xff09;&#xff08;尖叫&#…

非公平锁实现原理+源码解读

目录 非公平锁实现原理 加锁解锁流程 加锁源码 解锁源码 非公平锁实现原理 加锁解锁流程 先从构造器开始看&#xff0c;默认为非公平锁实现 public ReentrantLock() {sync new NonfairSync(); } NonfairSync 继承自 AQS 没有竞争时 第一个竞争出现时 Thread-1 执行了…

解决不允许一个用户使用一个以上用户名与一个服务器或共享资源的多重连接的问题

问题概述&#xff1a; 用windows server 2012 r2 vl x64搭了个文件服务器&#xff0c;在使用时有个问题&#xff0c;老是用户登录有问题&#xff0c;提示“不允许一个用户使用一个以上用户名与一个服务器或共享资源的多重连接”。出现的原因不详&#xff0c;网上也没查到合理的…

操作系统3:CPU任务调度和进程调度

目录 1、处理机调度的层次 &#xff08;1&#xff09;高级调度(High Level Scheduling) &#xff08;2&#xff09;低级调度(Low Level Scheduling) &#xff08;3&#xff09;中级调度(Intermediate Scheduling) 2、处理机调度算法的目标 批处理系统的目标 3、作业与作…

MongoDB 基于角色的访问控制

一、概述 MongoDB采用基于角色的访问控制&#xff08;RBAC&#xff09;来管理对 MongoDB系统。向用户授予一个或多个角色那 确定用户对数据库资源和操作的访问权限。外面 在角色分配中&#xff0c;用户无权访问系统。 1、启用访问控制 MongoDB默认情况下不启用访问控制。您可…

Facebook Insights分析工具解读,掌握关键数据指标

什么是Facebook Insights&#xff1f; Facebook Insights是Facebook平台上的一项内置分析工具&#xff0c;旨在帮助企业和品牌了解其在Facebook上的表现和受众互动情况。该工具提供了丰富的数据和指标&#xff0c;可以帮助用户洞察粉丝群体、了解发布内容的表现&#xff0c;并…

闭门造轮(LVGL_2)

例程1_// 组件(widgets)&#xff1a; 标签(label)的用法 static void label_event_cb(lv_event_t * e) {lv_obj_t * obj lv_event_get_target(e); // 获取触发事件的部件(对象)lv_event_code_t code lv_event_get_code(e); // 获取当前部件(对象)触发的事件代码sw…

Golang每日一练(leetDay0105) 最小高度树、戳气球

目录 310. 最小高度树 Minimum Height Trees &#x1f31f;&#x1f31f; 312. 戳气球 Burst Balloons &#x1f31f;&#x1f31f;&#x1f31f; &#x1f31f; 每日一练刷题专栏 &#x1f31f; Rust每日一练 专栏 Golang每日一练 专栏 Python每日一练 专栏 C/C每日一…

用自定义域名访问Tailscale节点

需求 tailscale 是好东西&#xff0c;在任何地方都可以和在局域网访问一样&#xff0c;但是也有着 IP 访问的不便&#xff0c;一方面 IP 是 tailscale 分配的&#xff08;非子网路由模式&#xff09;&#xff0c;另一方面还要记住各种端口 tailscale 也考虑到了这些问题&…

SpringBoot 使用 TestRestTemplate 进行 RESTful API 集成测试

SpringBoot 使用 TestRestTemplate 进行 RESTful API 集成测试 RESTful API 集成测试是测试应用程序与其外部依赖项之间的集成。SpringBoot提供了TestRestTemplate来测试RESTful API&#xff0c;本文将介绍如何使用TestRestTemplate进行RESTful API集成测试。 1. 什么是 TestR…

java File类 和 IO流

File类 文件和文件夹(文件路径)的抽象表示&#xff0c;是专门来出来磁盘上面的文件或文件夹的 构造方法 方法 返回boolean creatNewFile() 生成一个文件&#xff0c;当且仅当具有该名称的文件尚不存在时 public class Demo02 {public static void main(String[] args) th…