MySQL-SQL存储函数以及触发器详解

news2025/1/8 4:41:10

♥️作者:小刘在C站

♥️个人主页: 小刘主页 

♥️努力不一定有回报,但一定会有收获加油!一起努力,共赴美好人生!

♥️学习两年总结出的运维经验,以及思科模拟器全套网络实验教程。专栏:云计算技术

♥️小刘私信可以随便问,只要会绝不吝啬,感谢CSDN让你我相遇!

目录

MySQL

SQL

存储函数

1). 介绍

2). 案例

 触发器

介绍

 语法

1). 创建

2). 查看

3). 删除

案例

A. 插入数据触发器

测试:

B. 修改数据触发器

测试:

C. 删除数据触发器

测试:


MySQL

MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database Management System,关系数据库管理系统) 应用软件之一。MySQL是一种关系型数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。MySQL所使用的 SQL 语言是用于访问数据库的最常用标准化语言。MySQL 软件采用了双授权政策,分为社区版和商业版,由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,一般中小型和大型网站的开发都选择 MySQL 作为网站数据库。

SQL

结构化查询语言(Structured Query Language)简称SQL,是一种特殊目的的编程语言,是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统。结构化查询语言是高级的非过程化编程语言,允许用户在高层数据结构上工作。它不要求用户指定对数据的存放方法,也不需要用户了解具体的数据存放方式,所以具有完全不同底层结构的不同数据库系统, 可以使用相同的结构化查询语言作为数据输入与管理的接口。结构化查询语言语句可以嵌套,这使它具有极大的灵活性和强大的功能。

存储函数

1). 介绍

存储函数是有返回值的存储过程,存储函数的参数只能是 IN 类型的。具体语法如下:
CREATE FUNCTION 存储函数名称 ([ 参数列表 ])
RETURNS type [characteristic ...]
BEGIN
-- SQL语句
RETURN ...;
END ; 
characteristic 说明
DETERMINISTIC :相同的输入参数总是产生相同的结果
NO SQL :不包含 SQL 语句。
READS SQL DATA :包含读取数据的语句,但不包含写入数据的语句。

2). 案例

计算从 1 累加到 n 的值, n 为传入的参数值。
create function fun1(n int)
returns int deterministic
begin
declare total int default 0;
while n>0 do
set total := total + n;
set n := n - 1;
end while;
return total;
end;
select fun1(50);
mysql8.0 版本中 binlog 默认是开启的,一旦开启了, mysql 就要求在定义存储过程时,需要指定
characteristic 特性,否则就会报如下错误:

 触发器

介绍

触发器是与表有关的数据库对象,指在 insert/update/delete 之前 (BEFORE) 或之后 (AFTER) ,触
发并执行触发器中定义的 SQL 语句集合。触发器的这种特性可以协助应用在数据库端确保数据的完整性, 日志记录 , 数据校验等操作 。
使用别名 OLD NEW 来引用触发器中发生变化的记录内容,这与其他的数据库是相似的。现在触发器还只支持行级触发,不支持语句级触发。

 语法

1). 创建

CREATE TRIGGER trigger_name
BEFORE/AFTER INSERT/UPDATE/DELETE
ON tbl_name FOR EACH ROW -- 行级触发器
BEGIN
trigger_stmt ;
END; 

2). 查看

SHOW TRIGGERS ;

3). 删除

DROP TRIGGER [schema_name.]trigger_name ; -- 如果没有指定 schema_name,默认为当前数
据库 。

案例

通过触发器记录 tb_user 表的数据变更日志,将变更日志插入到日志表 user_logs , 包含增加 ,
修改 , 删除 ;
表结构准备 :
-- 准备工作 : 日志表 user_logs

create table user_logs(

id int(11) not null auto_increment,

operation varchar(20) not null comment '操作类型, insert/update/delete',

operate_time datetime not null comment '操作时间',

operate_id int(11) not null comment '操作的ID',

operate_params varchar(500) comment '操作参数',

primary key(`id`)

)engine=innodb default charset=utf8;

A. 插入数据触发器

create trigger tb_user_insert_trigger

after insert on tb_user for each row

begin
insert into user_logs(id, operation, operate_time, operate_id, operate_params)

VALUES

(null, 'insert', now(), new.id, concat('插入的数据内容为:

id=',new.id,',name=',new.name, ', phone=', NEW.phone, ', email=', NEW.email, ',

profession=', NEW.profession));

end;

测试:

-- 查看

show triggers ;

-- 插入数据到tb_user

insert into tb_user(id, name, phone, email, profession, age, gender, status,

createtime) VALUES (26,'三皇子','18809091212','erhuangzi@163.com','软件工

程',23,'1','1',now());
测试完毕之后,检查日志表中的数据是否可以正常插入,以及插入数据的正确性。

B. 修改数据触发器

create trigger tb_user_update_trigger

after update on tb_user for each row

begin

insert into user_logs(id, operation, operate_time, operate_id, operate_params)

VALUES

(null, 'update', now(), new.id,

concat('更新之前的数据: id=',old.id,',name=',old.name, ', phone=',

old.phone, ', email=', old.email, ', profession=', old.profession,

' | 更新之后的数据: id=',new.id,',name=',new.name, ', phone=',

NEW.phone, ', email=', NEW.email, ', profession=', NEW.profession));

end;

测试:

-- 查看
show triggers ;
-- 更新
update tb_user set profession = '会计' where id = 23;
update tb_user set profession = '会计' where id <= 5;
测试完毕之后,检查日志表中的数据是否可以正常插入,以及插入数据的正确性。

C. 删除数据触发器

create trigger tb_user_delete_trigger

after delete on tb_user for each row

begin

insert into user_logs(id, operation, operate_time, operate_id, operate_params)

VALUES

(null, 'delete', now(), old.id,

concat('删除之前的数据: id=',old.id,',name=',old.name, ', phone=',

old.phone, ', email=', old.email, ', profession=', old.profession));

end;

测试:

-- 查看
show triggers ;
-- 删除数据
delete from tb_user where id = 26; 
测试完毕之后,检查日志表中的数据是否可以正常插入,以及插入数据的正确性。

♥️关注,就是我创作的动力

♥️点赞,就是对我最大的认可

♥️这里是小刘,励志用心做好每一篇文章,谢谢大家

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/680628.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PyTorch翻译官网教程3-DATASETS DATALOADERS

官网链接 Datasets & DataLoaders — PyTorch Tutorials 2.0.1cu117 documentation 数据集和数据加载器 处理样本数据的代码可能会变得混乱并且难以维护。理想情况下&#xff0c;我们希望我们的数据集代码与模型训练代码解耦&#xff0c;以获得更好的可读性和模块化。PyT…

轻松了解工作与学习必备的版本控制+Git,全程舒适~

目录 一、版本控制 二、版本控制器 三、Git 四、项目实操 第一步 在github上创建一个新的远程仓库 第二步 克隆到本地文件夹 第三步 IDEA&#xff08;PyCharm为例&#xff09;集成Git 一、版本控制 概念&#xff1a;版本控制是指对软件开发过程中各种程序代码、配置文件…

【spring cloud学习】4、创建服务提供者

注册中心Eureka Server创建并启动之后&#xff0c;接下来介绍如何创建一个Provider并且注册到Eureka Server中&#xff0c;再提供一个REST接口给其他服务调用。 首先一个Provider至少需要两个组件包依赖&#xff1a;Spring Boot Web服务组件和Eureka Client组件。如下所示&…

ADRC自抗扰控制(CODESYS平台完整源代码)

博途PLC ADRC完整源代码请参考下面文章链接: 博途PLC ADRC自抗扰控制完整SCL源代码_adrc控制算法代码_RXXW_Dor的博客-CSDN博客关于自抗扰控制框图可以参看专栏的其它文章,这里不再讲解具体算法过程,详细了解也可以参看韩京清研究员写的 《ADRC自抗扰》一书。_adrc控制算法…

基于混合策略的改进哈里斯鹰优化算法-附代码

基于混合策略的改进哈里斯鹰优化算法 文章目录 基于混合策略的改进哈里斯鹰优化算法1.哈里斯鹰优化算法2.改进哈里斯鹰优化算法2.1 Sobol 序列初始化种群2.2 limit 阈值执行全局搜索阶段2.4 动态反向学习 3.实验结果4.参考文献5.Matlab代码6.python代码 摘要&#xff1a;针对原…

ElasticSearch-Kibana的安装

Kibana的安装 什么是ELK? ELK是Elasticsearch,Logstash,Kibana三大开源框架首字母大写简称,ELK属于大数据,是拆箱即用的,上手比较快 什么是Kibana? Kibana是一个针对ES的开源分析以及可视化平台,用来搜索,查看交互存储在ES索引中的数据,使用Kibana可以通过各类图标进行高级…

Flink(1)-概述

1.1 Apache Flink是什么&#xff1f; 在当前数据量激增的时代&#xff0c;各种业务场景都有大量的业务数据产生&#xff0c;对于这些不断产生的数据应该如何进行有效的处理&#xff0c;成为当下大多数公司所面临的问题。目前比较流行的大数据处理引擎Apache Spark&#xff0c;…

SpringBoot第14讲:SpringBoot 如何统一异常处理

SpringBoot第14讲&#xff1a;SpringBoot 如何统一异常处理 本文是SpringBoot第14讲&#xff0c;SpringBoot接口如何对异常进行统一封装&#xff0c;并统一返回呢&#xff1f;以上文的参数校验为例&#xff0c;如何优雅的将参数校验的错误信息统一处理并封装返回呢 文章目录 Sp…

诊断测试工具CANoe.DiVa从入门到精通系列——开门见山

我是穿拖鞋的汉子,魔都中坚持长期主义的工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 人们会在生活中不断攻击你。他们的主要武器是向你灌输对自己的怀疑:你的价值、你的能力、你的潜力。他们往往会将此伪装成客观意见,但无一例外的是,他们想…

网络安全就业前景如何?是否还能入行?

网络安全专业是2015年新设立的专业&#xff0c;作为新兴专业吸引了很多人准备入行&#xff0c;那么它的就业前景怎么样&#xff1f;大致可以分为3个版块来介绍。 1.就业领域前景广阔 目前互联网、通信、新能源、房地产、金融证券、电子技术等行业迫切需要网络安全人才&#x…

22. 算法之图的最短路径

前言 关于图的最短路径问题&#xff0c;是图这种数据结构中的经典问题。也是与我们的生活息息相关的&#xff0c;比如上海四通八达的地铁线路&#xff0c;从一个地铁站&#xff0c;到另一个地铁站&#xff0c;可能有很多种不同的路线。那么&#xff0c;我们选哪种路线&#xf…

JavaFX第五篇 Image图片加载处理

JavaFX第五篇 Image图片加载处理 1. 代码2. 讲解3. 代码仓 图片已经成为每个网站的必备了&#xff0c;不仅可以提升个人网站的标识度而且还可以美化网站&#xff0c; 所以这里需要讲解一下如何加载图片&#xff0c;展示到前台给用户查看。 本次只是简单的讲解如何展示使用&…

【算法证明 七】深入理解深度优先搜索

深度优先搜索包含一个递归&#xff0c;对其进行分析要复杂一些。与上一篇文章一样&#xff0c;还是给节点定义几个状态&#xff0c;然后详细分析深度优先搜索算法有哪些性质。 算法描述 定义状态 v . c o l o r &#xff1a;初始状态为白色&#xff0c;被发现时改为灰色&…

Mysql的SQL性能分析【借助EXPLAIN分析】

性能分析 要说sql有问题&#xff0c;需要拿出证据&#xff0c;因此需要性能分析 Mysql查询优化器&#xff08;Mysql Query Optimizer&#xff09; Mysql中有专门负责优化SELECT语句的优化器模块&#xff0c;主要功能&#xff1a;通过计算分析系统中收集到的统计信息&#xf…

Xline v0.4.1: 一个用于元数据管理的分布式KV存储

Xline是什么&#xff1f;我们为什么要做Xline&#xff1f; Xline是一个基于Curp协议的&#xff0c;用于管理元数据的分布式KV存储。现有的分布式KV存储大多采用Raft共识协议&#xff0c;需要两次RTT才能完成一次请求。当部署在单个数据中心时&#xff0c;节点之间的延迟较低&a…

python机器学习——分类模型评估 分类算法(k近邻,朴素贝叶斯,决策树,随机森林,逻辑回归,svm)

目录 分类模型的评估模型优化与选择1.交叉验证2.网格搜索 【分类】K近邻算法【分类】朴素贝叶斯——文本分类实例&#xff1a;新闻数据分类 【分类】决策树和随机森林1.决策树2.决策树的算法3.代码实现实例&#xff1a;泰坦尼克号预测生死 【集成学习】随机森林1.集成学习2.随机…

LOMO:在受限资源上全参数微调

LOMO&#xff1a;Full Parameter Fine-Tuning for large language models with limited resources IntroductionMethodRethink the functionality of optimizerUsing SGD LOMO&#xff1a; LOw-Memory Optimization 实验参考 Introduction 在这篇文章中&#xff0c;作者的目的…

Go 语言进阶 - 工程进阶

前言&#xff1a; \textcolor{Green}{前言&#xff1a;} 前言&#xff1a; &#x1f49e;这个专栏就专门来记录一下寒假参加的第五期字节跳动训练营 &#x1f49e;从这个专栏里面可以迅速获得Go的知识 今天的内容包括以下两个内容。关于实践的内容我会在后续发布出来。 01.语言…

新零售破局丨2023年探索全新电商运维模式——永倍达模式深度解析

新零售破局丨2023年探索全新电商运维模式——永倍达模式深度解析 大家好&#xff01;我是微三云胡佳东&#xff0c;一家专业的电商软件开发公司的负责人。 近年来&#xff0c;随着电商的高速发展&#xff0c;不少电商平台成为了市场经济的优质榜样&#xff0c;互联网市场竞争也…

设计模型学习-UML图

1&#xff0c;简介 UML图有很多种类型&#xff0c;但掌握其中的类图、用例图和时序图就可以完成大部分的工作。其中最重要的便是「类图」&#xff0c;它是面向对象建模中最常用和最重要的图&#xff0c;是定义其他图的基础。 类图主要是用来显示系统中的类、接口以及它们之间的…