【Java】PriorityQueue--优先级队列

news2024/10/7 4:26:06

目录

 一、优先级队列 

(1)概念

二、优先级队列的模拟实现

(1)堆的概念 

(2)堆的存储方式  

(3)堆的创建

堆向下调整

(4)堆的插入与删除

堆的插入

 堆的删除

三、常用接口介绍

1、PriorityQueue的特性

2、PriorityQueue常用接口介绍  

(1)优先级队列的构造

(2)插入/删除/获取优先级最高的元素

四、堆排序 


 一、优先级队列 

(1)概念

       前面介绍过队列, 队列是一种先进先出(FIFO)的数据结构 ,但有些情况下, 操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列 ,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话.
在这种情况下, 数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象 这种数据结构就是 优先级队列(Priority Queue)。

二、优先级队列的模拟实现

JDK1.8 中的 PriorityQueue底层使用了堆这种数据结构 ,而堆实际就是在完全二叉树的基础上进行了一些调整。

(1)堆的概念 

       如果有一个 关键码的集合 K = {k0 k1 k2 kn-1} ,把它的所有元素 按完全二叉树的顺序存储方式存储在一个一维数组中 并满足: Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 Ki >= K2i+2) i = 0 1 2… ,则 称为小堆 ( 或大堆) 。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。

大根堆和小根堆的示例图如下:

 


(2)堆的存储方式  

从堆的概念可知, 堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储
注意:对于 非完全二叉树,则不适合使用顺序方式进行存储 ,因为为了能够还原二叉树, 空间中必须要存储空节点,就会导致空间利用率比较低

 

将元素存储到数组中后,可以根据二叉树性质 对树进行还原。假设 i 为节点在数组中的下标,则有:
如果 i 0 ,则 i 表示的节点为根节点,否则 i 节点的双亲节点为 (i - 1)/2
如果 2 * i + 1 小于节点个数,则节点 i 的左孩子下标为 2 * i + 1 ,否则没有左孩子
如果 2 * i + 2 小于节点个数,则节点 i 的右孩子下标为 2 * i + 2 ,否则没有右孩子

 


(3)堆的创建

堆向下调整

我们来思考一个问题:对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?

仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。 

向下过程(以小堆为例):

1. parent 标记需要调整的节点, child 标记 parent 的左孩子 (注意:parent如果有孩子一定先是有左孩子)
2. 如果 parent 的左孩子存在,即 :child < size , 进行以下操作,直到 parent 的左孩子不存在
        (1)parent右孩子是否存在,存在找到左右孩子中最小的孩子,让 child 进行标
        (2)将parent 与较小的孩子 child 比较,如果:
parent 小于较小的孩子 child ,调整结束
否则:交换 parent 与较小的孩子 child ,交换完成之后, parent 中大的元素向下移动,可能导致子树不满足对的性质,因此需要继续向下调整,即parent = child child = parent*2+1; 然后继续 2

 

public void shiftDown(int[] array, int parent) {
// child先标记parent的左孩子,因为parent可能右左没有右
        int child = 2 * parent + 1;
        int size = array.length;
        while (child < size) {
// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
            if(child+1 < size && array[child+1] < array[child]){
                child += 1;
            }
// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
            if (array[parent] <= array[child]) {
                break;
            }else{
// 将双亲与较小的孩子交换
                int t = array[parent];
                array[parent] = array[child];
                array[child] = t;
// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
                parent = child;
                child = parent * 2 + 1;
            }
        }
    }

 注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。

时间复杂度分析:
最坏的情况 即图示的情况, 从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(\log N

堆的创建

那对于普通的序列 { 1,5,3,8,7,6 } ,即根节点的左右子树不满足堆的特性,又该如何调整呢?
此时,我们只需要从倒数第一个非叶子结点开始,依次进行向下调整即可。
    public static void createHeap(int[] array) {
// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整
        int root = ((array.length-2)>>1);
        for (; root >= 0; root--) {
            shiftDown(array, root);
        }
    }

时间复杂度的计算:

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明 ( 时间复杂度本来看的就是近似值,多几个节点不影响最终结果)

因此:建堆的时间复杂度为O(N) 


(4)堆的插入与删除

堆的插入

堆的插入总共需要两个步骤:
1. 先将元素放入到底层空间中 ( 注意:空间不够时需要扩容 )
2. 将最后新插入的节点向上调整,直到满足堆的性质

向上调整的代码如下:

    public void shiftUp(int child) {
// 找到child的双亲
        int parent = (child - 1) / 2;
        while (child > 0) {
// 如果双亲比孩子大,parent满足堆的性质,调整结束
            if (array[parent] > array[child]) {
                break;
            }
            else{
// 将双亲与孩子节点进行交换
                int t = array[parent];
                array[parent] = array[child];
                array[child] = t;
// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
                child = parent;
                parent = (child - 1) / 2;
            }
        }
    }

 堆的删除

 注意:堆的删除一定删除的是堆顶元素。具体如下:

1. 将堆顶元素对堆中最后一个元素交换
2. 将堆中有效数据个数减少一个
3. 对堆顶元素进行向下调整

 

 


三、常用接口介绍

1、PriorityQueue的特性

Java 集合框架中提供了 PriorityQueue PriorityBlockingQueue 两种类型的优先级队列, PriorityQueue是线程不安全的 PriorityBlockingQueue是线程安全的 ,本文主要介绍 PriorityQueue
关于PriorityQueue的使用要注意:
1. 使用时必须导入 PriorityQueue 所在的包,即:
import java.util.PriorityQueue;
2. PriorityQueue 中放置的 元素必须要能够比较大小,不能插入无法比较大小的对象 ,否则会抛出 ClassCastException异常
3. 不能插入null对象 否则会抛出 NullPointerException
4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容
5. 插入和删除元素的时间复杂度为O(logN)
6. PriorityQueue 底层使用了 堆数据结构
7. PriorityQueue 默认情况下是小堆 --- 即每次获取到的元素都是最小的元素

2、PriorityQueue常用接口介绍  

(1)优先级队列的构造

此处只是列出了 PriorityQueue 中常见的几种构造方式,其他的可以参考帮助文档。

 

    static void TestPriorityQueue(){
// 创建一个空的优先级队列,底层默认容量是11
        PriorityQueue<Integer> q1 = new PriorityQueue<>();
// 创建一个空的优先级队列,底层的容量为initialCapacity
        PriorityQueue<Integer> q2 = new PriorityQueue<>(100);
        ArrayList<Integer> list = new ArrayList<>();
        list.add(4);
        list.add(3);
        list.add(2);
        list.add(1);
// 用ArrayList对象来构造一个优先级队列的对象
// q3中已经包含了三个元素
        PriorityQueue<Integer> q3 = new PriorityQueue<>(list);
        System.out.println(q3.size());
        System.out.println(q3.peek());
    }

注意:默认情况下,PriorityQueue队列是小堆,如果需要大堆需要用户提供比较器

// 用户自己定义的比较器:直接实现Comparator接口,然后重写该接口中的compare方法即可
class IntCmp implements Comparator<Integer>{
    @Override
    public int compare(Integer o1, Integer o2) {
        return o2-o1;
    }
}
public class TestPriorityQueue {
    public static void main(String[] args) {
        PriorityQueue<Integer> p = new PriorityQueue<>(new IntCmp());
        p.offer(4);
        p.offer(3);
        p.offer(2);
        p.offer(1);
        p.offer(5);
        System.out.println(p.peek());
    }
}
此时创建出来的就是一个大堆。

(2)插入/删除/获取优先级最高的元素

    static void TestPriorityQueue2(){
        int[] arr = {4,1,9,2,8,0,7,3,6,5};
// 一般在创建优先级队列对象时,如果知道元素个数,建议就直接将底层容量给好
// 否则在插入时需要不多的扩容
// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低
        PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);
        for (int e: arr) {
            q.offer(e);
        }
        System.out.println(q.size()); // 打印优先级队列中有效元素个数
        System.out.println(q.peek()); // 获取优先级最高的元素
// 从优先级队列中删除两个元素之和,再次获取优先级最高的元素
        q.poll();
        q.poll();
        System.out.println(q.size()); // 打印优先级队列中有效元素个数
        System.out.println(q.peek()); // 获取优先级最高的元素
        q.offer(0);
        System.out.println(q.peek()); // 获取优先级最高的元素
// 将优先级队列中的有效元素删除掉,检测其是否为空
        q.clear();
        if(q.isEmpty()){
            System.out.println("优先级队列已经为空!!!");
        }
        else{
            System.out.println("优先级队列不为空");
        }
    }

 注意:以下是JDK 1.8中,PriorityQueue的扩容方式:

    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    private void grow(int minCapacity) {
        int oldCapacity = queue.length;
// Double size if small; else grow by 50%
        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
                (oldCapacity + 2) :
                (oldCapacity >> 1));
// overflow-conscious code
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        queue = Arrays.copyOf(queue, newCapacity);
    }
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
    }
优先级队列的扩容说明:
如果容量小于 64 时,是按照 oldCapacity 2 倍方式扩容的
如果容量大于等于 64 ,是按照 oldCapacity 1.5 倍方式扩容的
如果容量超过 MAX_ARRAY_SIZE ,按照 MAX_ARRAY_SIZE 来进行扩容

四、堆排序 

堆排序即利用堆的思想来进行排序,总共分为两个步骤:
1. 建堆
        升序:建大堆
        降序:建小堆
2. 利用堆删除思想来进行排序
建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/679805.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Kubernetes(k8s)容器编排组件介绍

目录 1 整体架构1.1 Master 架构1.2 Node 架构 2 k8s部署组件介绍2.1 K8s 集群架构图2.2 k8s控制组件2.2.1 控制平面2.2.2 kube-apiserver2.2.3 kube-scheduler2.2.4 kube-controller-manager2.2.5 etcd 2.3 k8s运行组件2.3.1 k8s节点2.3.2 容器集2.3.3 容器运行时引擎2.3.4 ku…

机试复试准备中--梦校真题

一、矩阵转置二、统计单词写法一&#xff1a;读取一整行写法二&#xff1a;依次读入每一个单词 三、二叉排序树&#xff08;DFS&#xff09;四、IP地址五、特殊排序六、ab&#xff08;高精度加法&#xff09;七、奇偶校验八、最大的两个数九、二叉树遍历(DFS)十、成绩排序十一、…

【C++学习】C++入门 | 引用 | 引用的底层原理 | auto关键字 | 范围for(语法糖)

写在前面&#xff1a; 上一篇文章我介绍了缺省参数和函数重载&#xff0c; 探究了C为什么能够支持函数重载而C语言不能&#xff0c; 这里是传送门&#xff0c;有兴趣可以去看看&#xff1a;http://t.csdn.cn/29ycJ 这篇我们继续来学习C的基础知识。 目录 写在前面&#x…

正交编码与正交沃尔什函数详解

本专栏包含信息论与编码的核心知识&#xff0c;按知识点组织&#xff0c;可作为教学或学习的参考。markdown版本已归档至【Github仓库&#xff1a;https://github.com/timerring/information-theory 】或者公众号【AIShareLab】回复 信息论 获取。 文章目录 正交编码正交编码的…

Spring Boot 集成 WebSocket 实现服务端推送消息到客户端

假设有这样一个场景&#xff1a;服务端的资源经常在更新&#xff0c;客户端需要尽量及时地了解到这些更新发生后展示给用户&#xff0c;如果是 HTTP 1.1&#xff0c;通常会开启 ajax 请求询问服务端是否有更新&#xff0c;通过定时器反复轮询服务端响应的资源是否有更新。 在长…

css基础(二)

目录 1. CSS 的复合选择器 1.1 什么是复合选择器 1.2 后代选择器(重要&#xff09; 1.3 子选择器(重要&#xff09; 1.4 并集选择器(重要&#xff09; 1.5 伪类选择器 1.6 链接伪类选择器 1.7 :focus伪类选择器 1.8 复合选择器总结 二、 CSS 的元素显示模式 2.1什么是元素显示模…

多线程编程和并行计算的实例:期货交易及打车软件算法

多线程编程和并行计算的实例:期货交易及打车软件算法 解决现实生活中的问题时&#xff0c;多处理器和多核系统的普及使并行计算成为一个关键的性能提升手段。在这篇博客中&#xff0c;我们将通过深入讨论两个引人入胜而又具有实际意义的场景——期货交易和打车匹配算法&#xf…

CSS圆角进化论

CSS圆角发展过程 大致经历了3个阶段&#xff0c;包括&#xff1a; 背景图片实现圆角CSS2.0标签模拟圆角CSS3.0圆角属性&#xff08;border-radius属性)实现圆角 ☛背景图片实现圆角&#xff1a;使用背景图片实现圆角的方式很多&#xff0c;实现的方式和圆角的切图方式关系密…

AI绘图软件分享:Midjourney 基础教程(三)

大家好&#xff0c;我是权知星球&#xff0c;今天继续给大家分享Midjourney 基础教程&#xff08;三&#xff09;&#xff1a;Midjourney 图生图。 刚开始学习使⽤ AI 绘画时&#xff0c;⼤部分⼈的绘画⽅式&#xff1a; 有⼀个想象中的画⾯&#xff0c;⽤中⽂将这个画⾯描述…

【文件操作与IO】Java中如何操作文件

目录 Java 中操作文件 File 概述 属性 构造方法 方法 代码示例 文件内容的读写 —— 数据流 InputStream 概述 FileInputStream 概述 利用 Scanner 进行字符读取 OutputStream 概述 利用 OutputStreamWriter 进行字符写入 利用 PrintWriter 找到我们熟悉的方法 代码…

D. A Wide, Wide Graph(树的直径)

Problem - 1805D - Codeforces 给定一棵包含n个节点的树&#xff08;一个无环联通图&#xff09;&#xff0c;对于一个固定的整数k&#xff0c;定义Gk为一个具有n个节点的无向图&#xff0c;其中只有当在给定树中节点u和v之间的距离至少为k时才存在边。 对于从1到n的每个k&…

undefined reference to `tputs‘

昨天在Debian11 上编译 bluez 的时候&#xff0c;看这里&#xff0c;出现了如下这个错误&#xff0c;一般这种未定义的错误提示都是没有链接正确的库导致&#xff0c;但是搞了很久都没解决。 奇怪的是之前在 Centos 上编译却没有遇到这个问题&#xff0c;而且在 configure 时也…

做Java开发,真的“穷途末路”了吗?浅谈从2018-2023年,这行到底“卷”成了啥样

文章目录 一、火爆的行业1、裁员潮引发的行业惶恐2、国情下的行业现状3、时代的快速发展 二、Java开发“卷”成了啥样1、2013年2、2018年3、2013年4、真的需要这么多知识吗 三、大龄程序员何去何从引用来处 一、火爆的行业 “程序员”这个代名词&#xff0c;似乎总是跟“高薪”…

基于多进程并发-进程通讯之管道(pipe)

一、管道&#xff08;pipe&#xff09; 所谓的管道&#xff0c;就是内核⾥⾯的⼀串缓存&#xff08;Pipe&#xff09;。一个进程从管道的⼀端写⼊的数据&#xff0c;实际上是缓存在内核中的&#xff0c;另⼀端读取&#xff0c;也就是从内核中读取这段数据。 特性&#xff1a;…

windwos2016 由于没有远程桌面授权服务器可以提供许可证

一、问题&#xff1a; 经常会遇到&#xff0c;server2016、server2012、server2008操作系统&#xff0c;安装远程桌面服务之后没有激活&#xff0c;经过120天到期之后&#xff0c;没办法再使用&#xff0c;重新安装激活远程桌面服务也不能用。 二、具体的报错如下图&#xff…

归并排序详解-附Python代码

排序思路 将输入的列表递归分解成若干个有序的子列表&#xff08;只含有一个元素&#xff09;&#xff1b;将分解后的有序子列表两两归并成一个新的有序列表&#xff1b;重复步骤2&#xff0c;直到完成排序。 重点&#xff1a;如何定义一个归并函数&#xff0c;可以将两个有序…

Qt-自定义控件

Qt-自定义控件 简单使用 首先创建一个工程 在现有的工程上添加文件&#xff0c;选择Qt设计师界面类 选择Widget 添加两个控件之后&#xff0c;选择水平布局 将刚刚自定义的控件smallWidget放置在原始的控件中 首先在原始工程的ui界面 随便放置一个widget 选择&#xff…

我的内网渗透-代理转发(1)

概念 网关 必须经过 用来进行路由转发的设备&#xff0c;网关的作用是让不同网段之间能够通信 代理 委托访问 无论代理后面挂了几台设备&#xff0c;都认为是从代理进行访问&#xff0c;对外只表现为代理一台。外部认为是与代理进行…

计算机提示xinput1_3.dll丢失,三个详细修复方法

打开《绝地求生》游戏的时候&#xff0c;计算机提示xinput1_3.dll丢失&#xff0c;无法启动运行。重新安装一遍游戏依然无法启动运行。这个是由于xinput1_3.dll文件是属于电脑系统DirectX9.0的一个组件&#xff0c;用于提供输入和输出功能。它包含了各种接口和函数&#xff0c;…

spi控制器和spi设备的加载过程

spi控制器都是挂在platform总线上的&#xff0c;所以要等platform总线上的设备驱动加载spi控制器完成后才能加载spi设备。 1.spi控制器加载 由spi控制器驱动程序调用spi_register_master来完成spi控制器驱动加载 int spi_register_master(struct spi_master *master) { ... s…