MySQL学习笔记之索引优化与查询优化

news2024/11/13 22:48:15

文章目录

  • 前言
  • 数据准备
    • 建表
    • 创建函数
    • 插入数据
    • 创建删除索引函数
  • 索引失效案例
    • 全值匹配
    • 最佳左前缀法则
    • 主键插入顺序
    • 计算、函数导致列索引失效
      • 函数导致索引失效
      • 计算导致索引失效
    • 类型转换导致列索引失效
    • 范围条件右边的列索引失效
    • 不等于导致列索引失效
    • is not null不能使用索引
    • like以通配符%开头导致列索引失效
    • or前后存在非索引的列导致列索引失效
    • 数据库和表的字符集应统一使用utf8mb4
  • 关联查询优化
    • 数据准备
    • 左外连接
    • 内连接
    • 小结
  • 子查询优化
  • 排序优化
    • 优化建议
    • 举例
      • 方案1:创建联合索引(age, name)
      • 方案2:直接创建一个三字段索引
    • filesort调优策略
  • 分组优化
  • 分页查询优化
    • 优化思路一
    • 优化思路二
  • 优先考虑覆盖索引
    • 覆盖索引的定义
    • 覆盖索引的利弊
  • 给字符串添加索引
    • 前缀索引
    • 前缀索引对覆盖索引的影响
  • 索引下推
    • 使用前后的扫描过程
      • 使用ICP前的扫描过程
      • 使用ICP扫描的过程
      • 使用前后的成本差别
    • ICP的使用条件
    • ICP使用案例
  • 普通索引和唯一索引
    • 查询过程
    • 更新过程
    • change buffer的使用场景
  • 其他查询优化策略
    • exists和in的区分
    • count(*)、count(1)和count(字段)的效率
    • 关于select(*)
    • limit 1对优化的影响
    • 多使用commit

前言

MySQL查询优化有两种方法:物理查询优化和逻辑查询优化。

  • 物理查询优化是通过索引或表连接等方式来进行优化;
  • 逻辑查询优化是通过SQL等价变化来提升查询效率(即换一种SQL写法)。

本文记录的是物理查询优化方法。

数据准备

学生表50万条数据,班级表1万条数据。

建表

mysql> CREATE TABLE `class` ( `id` INT(11) NOT NULL AUTO_INCREMENT, `className` VARCHAR(30) DEFAULT NULL, `address` VARCHAR(40) DEFAULT NULL, `monitor` INT NULL , PRIMARY KEY (`id`) ) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE `student` ( `id` INT(11) NOT NULL AUTO_INCREMENT, `stuno` INT NOT NULL , `name` VARCHAR(20) DEFAULT NULL, `age` INT(3) DEFAULT NULL, `classId` INT(11) DEFAULT NULL, PRIMARY KEY (`id`)) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
Query OK, 0 rows affected (0.01 sec)

创建函数

创建用来插入随机数据的函数:

mysql> set global log_bin_trust_function_creators=1;
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER //
mysql> CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255) BEGIN DECLARE chars_str VARCHAR(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ'; DECLARE return_str VARCHAR(255) DEFAULT ''; DECLARE i INT DEFAULT 0; WHILE i < n DO SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1)); SET i = i + 1; END WHILE; RETURN return_str; END //
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11) BEGIN DECLARE i INT DEFAULT 0; SET i = FLOOR(from_num +RAND()*(to_num - from_num+1)) ; RETURN i; END //
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE PROCEDURE insert_stu2( START INT , max_num INT ) BEGIN DECLARE i INT DEFAULT 0; SET autocommit = 0; REPEAT SET i = i + 1; INSERT INTO student (stuno, name ,age ,classId ) VALUES ((START+i),rand_string(6),rand_num(1,50),rand_num(1,1000)); UNTIL i = max_num END REPEAT; COMMIT; END //
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE PROCEDURE `insert_class`( max_num INT ) BEGIN DECLARE i INT DEFAULT 0; SET autocommit = 0; REPEAT SET i = i + 1; INSERT INTO class ( classname,address,monitor ) VALUES (rand_string(8),rand_string(10),rand_num(1,100000)); UNTIL i = max_num END REPEAT; COMMIT; END //
Query OK, 0 rows affected (0.00 sec)
mysql> delimiter ;

插入数据

mysql> call insert_class(10000);
Query OK, 0 rows affected (1.11 sec)

mysql> call insert_stu2(100000, 500000);
Query OK, 0 rows affected (33.24 sec)

创建删除索引函数

mysql> delimiter //
mysql> CREATE PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200)) BEGIN DECLARE done INT DEFAULT 0; DECLARE ct INT DEFAULT 0; DECLARE _index VARCHAR(200) DEFAULT ''; DECLARE _cur CURSOR FOR SELECT index_name FROM information_schema.STATISTICS WHERE table_schema=dbname AND table_name=tablename AND seq_in_index=1 AND index_name <>'PRIMARY' ; DECLARE CONTINUE HANDLER FOR NOT FOUND set done=2 ; OPEN _cur; FETCH _cur INTO _index; WHILE _index<>'' DO SET @str = CONCAT("drop index " , _index , " on " , tablename ); PREPARE sql_str FROM @str ; EXECUTE sql_str; DEALLOCATE PREPARE sql_str; SET _index=''; FETCH _cur INTO _index; END WHILE; CLOSE _cur; END //
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

索引失效案例

全值匹配

首先,针对student表的agenameclassId分别建立索引(age)(age, name)(age, name, classId)

create index idx_age on student(age);
create index idx_age_name on student(age, name);
create index idx_age_name_classid on student(age,name,classId);

如果where中有对多个索引列进行的等值匹配,且由and连接,则会尽量使用覆盖面最大的联合索引:

mysql> explain select * from student where age = 20 and name = 'a' and classid = 1;
+----+-------------+---------+------------+------+----------------------------------------------------+----------------------+---------+-------------------+------+----------+-------+
| id | select_type | table   | partitions | type | possible_keys                                      | key                  | key_len | ref               | rows | filtered | Extra |
+----+-------------+---------+------------+------+----------------------------------------------------+----------------------+---------+-------------------+------+----------+-------+
|  1 | SIMPLE      | student | NULL       | ref  | idx_age_name_classid,idx_name,idx_age,idx_age_name | idx_age_name_classid | 73      | const,const,const |    1 |   100.00 | NULL  |
+----+-------------+---------+------------+------+----------------------------------------------------+----------------------+---------+-------------------+------+----------+-------+
1 row in set, 1 warning (0.01 sec)

可以看到key列中,使用的索引是覆盖面最大的(age, name, classId)

最佳左前缀法则

一个联合索引最多可以包含16个字段。

  • 如果where的等值匹配中,多个索引列是按照定义对应的联合索引列时的顺序书写的,则会使用该联合索引的所有字段;
  • 如果联合索引中某个字段被跳过,则后面的索引字段都不会被使用:
mysql> explain select * from student where age = 20 and name = 'a' and classid = 1;
+----+-------------+---------+------------+------+----------------------------------------------------+----------------------+---------+-------------------+------+----------+-------+
| id | select_type | table   | partitions | type | possible_keys                                      | key                  | key_len | ref               | rows | filtered | Extra |
+----+-------------+---------+------------+------+----------------------------------------------------+----------------------+---------+-------------------+------+----------+-------+
|  1 | SIMPLE      | student | NULL       | ref  | idx_age_name_classid,idx_name,idx_age,idx_age_name | idx_age_name_classid | 73      | const,const,const |    1 |   100.00 | NULL  |
+----+-------------+---------+------------+------+----------------------------------------------------+----------------------+---------+-------------------+------+----------+-------+
1 row in set, 1 warning (0.01 sec)

mysql> explain select * from student where age = 20 and classId = 1;
+----+-------------+---------+------------+------+-----------------------------------+----------------------+---------+-------+-------+----------+-----------------------+
| id | select_type | table   | partitions | type | possible_keys                     | key                  | key_len | ref   | rows  | filtered | Extra                 |
+----+-------------+---------+------------+------+-----------------------------------+----------------------+---------+-------+-------+----------+-----------------------+
|  1 | SIMPLE      | student | NULL       | ref  | idx_age_name_classid,idx_age_name | idx_age_name_classid | 5       | const | 18480 |    10.00 | Using index condition |
+----+-------------+---------+------------+------+-----------------------------------+----------------------+---------+-------+-------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

执行select * from student where age = 20 and classId = 1;时,因为跳过了联合索引中的name字段,导致只有最前面的age使用到了联合索引,因此用到的索引长度为5(4(int) + 1(null))

主键插入顺序

假设有如下的聚簇索引B+树叶子结点:
在这里插入图片描述
此时如果再插入一条主键为9的记录,该记录的位置就会在8和10之间:
在这里插入图片描述
如果插入前,该页面已经满了,就需要通过页分裂将该页面分裂成两个页面,将本页中的一些数据移动到新创建的页中,这样会带来无味的性能损耗。因此,建议让主键按插入的顺序依次递增,或者拥有auto_increment属性,让存储引擎自己为记录生成主键,而不是我们手动插入。

计算、函数导致列索引失效

函数导致索引失效

先给student表的name字段创建索引:

CREATE INDEX idx_name ON student(NAME);

当我们使用like关键字对索引列执行右模糊查询时,会使用到刚创建的索引:

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name LIKE 'abc%';
+----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+
| id | select_type | table   | partitions | type  | possible_keys | key      | key_len | ref  | rows | filtered | Extra                 |
+----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+
|  1 | SIMPLE      | student | NULL       | range | idx_name      | idx_name | 63      | NULL |   32 |   100.00 | Using index condition |
+----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+
1 row in set, 2 warnings (0.01 sec)

但如果对索引列使用函数,就不能使用索引了:

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE left(name, 3) = 'abc';
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table   | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | student | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 499086 |   100.00 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
1 row in set, 2 warnings (0.00 sec)

计算导致索引失效

student表的stuno设置索引:

CREATE INDEX idx_sno ON student(stuno);

如果在where语句中对索引列进行计算,那么索引失效:

mysql> EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno+1 = 900001;
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table   | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | student | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 499086 |   100.00 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
1 row in set, 2 warnings (0.00 sec)

把对应的计算去掉,就可以使用索引:

mysql> EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno = 900000;
+----+-------------+---------+------------+------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table   | partitions | type | possible_keys | key     | key_len | ref   | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+---------+---------+-------+------+----------+-------+
|  1 | SIMPLE      | student | NULL       | ref  | idx_sno       | idx_sno | 4       | const |    1 |   100.00 | NULL  |
+----+-------------+---------+------------+------+---------------+---------+---------+-------+------+----------+-------+
1 row in set, 2 warnings (0.00 sec)

类型转换导致列索引失效

student表的name字段是varchar类型,因此下面的查询不会用到索引:

mysql> EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE name = 123;
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table   | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | student | NULL       | ALL  | idx_name      | NULL | NULL    | NULL | 499086 |    10.00 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
1 row in set, 4 warnings (0.00 sec)

若把where中索引列的匹配值改成索引列对应的类型,即可使用索引:

mysql> EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE name = "123";
+----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-------+
| id | select_type | table   | partitions | type | possible_keys | key      | key_len | ref   | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-------+
|  1 | SIMPLE      | student | NULL       | ref  | idx_name      | idx_name | 63      | const |    1 |   100.00 | NULL  |
+----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-------+
1 row in set, 2 warnings (0.00 sec)

范围条件右边的列索引失效

先给student表删除原有的name索引,再创建一个(age, name, classid)联合索引:

drop index idx_name on student;
create index idx_age_name_classid on student(age,name,classid);

那么,以下查询会用到新创建的联合索引,因为联合索引(age, name, classId)中的列从左往右依次为等值匹配、等值匹配、范围匹配:

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abc' AND student.classId>20 ;
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
| id | select_type | table   | partitions | type  | possible_keys        | key                  | key_len | ref  | rows | filtered | Extra                 |
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
|  1 | SIMPLE      | student | NULL       | range | idx_age_name_classid | idx_age_name_classid | 73      | NULL |    1 |   100.00 | Using index condition |
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
1 row in set, 2 warnings (0.00 sec)

但如果把联合索引中最前面的age从等值匹配改成不等值匹配,就不能用到索引(age, name, classId)了:

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age > 30 AND student.classId = 20 AND student.name = 'abc' ;
+----+-------------+---------+------------+------+-----------------------------------+------+---------+------+--------+----------+-------------+
| id | select_type | table   | partitions | type | possible_keys                     | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+---------+------------+------+-----------------------------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | student | NULL       | ALL  | idx_age_name_classid,idx_age_name | NULL | NULL    | NULL | 499086 |     0.50 | Using where |
+----+-------------+---------+------------+------+-----------------------------------+------+---------+------+--------+----------+-------------+
1 row in set, 2 warnings (0.00 sec)

where中的顺序是无所谓的,比如把中间的student.classId改成范围匹配,还是会用到联合索引:

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age = 30 AND student.classId > 20 AND student.name = 'abc' ;
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
| id | select_type | table   | partitions | type  | possible_keys        | key                  | key_len | ref  | rows | filtered | Extra                 |
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
|  1 | SIMPLE      | student | NULL       | range | idx_age_name_classid | idx_age_name_classid | 73      | NULL |    1 |   100.00 | Using index condition |
+----+-------------+---------+------------+-------+----------------------+----------------------+---------+------+------+----------+-----------------------+
1 row in set, 2 warnings (0.00 sec)

结论就是,创建联合索引时,要把范围匹配的列写到最后。

不等于导致列索引失效

student.name字段加上索引:

create index idx_name on student(name);

对索引列进行不等于判断,会导致列索引失效;对索引列进行等值判断,则不会导致索引失效:

mysql> explain select * from student where name = 'abc';
+----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-------+
| id | select_type | table   | partitions | type | possible_keys | key      | key_len | ref   | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-------+
|  1 | SIMPLE      | student | NULL       | ref  | idx_name      | idx_name | 63      | const |    1 |   100.00 | NULL  |
+----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from student where name != 'abc';
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table   | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | student | NULL       | ALL  | idx_name      | NULL | NULL    | NULL | 499086 |    50.16 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

is not null不能使用索引

student.name字段加上索引:

create index idx_name on student(name);
  • 如果where中对索引列进行了is not null判断,则对应的索引失效;
  • 如果是is null判断,就不会失效:
mysql> explain select * from student where name is not null;
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table   | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | student | NULL       | ALL  | idx_name      | NULL | NULL    | NULL | 499086 |    50.00 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
1 row in set, 1 warning (0.01 sec)


mysql> explain select * from student where name is null;
+----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-----------------------+
| id | select_type | table   | partitions | type | possible_keys | key      | key_len | ref   | rows | filtered | Extra                 |
+----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-----------------------+
|  1 | SIMPLE      | student | NULL       | ref  | idx_name      | idx_name | 63      | const |    1 |   100.00 | Using index condition |
+----+-------------+---------+------------+------+---------------+----------+---------+-------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

like以通配符%开头导致列索引失效

左模糊会导致索引失效,右模糊不会:

mysql> explain select * from student where name like '%abc';
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table   | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | student | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 499086 |    11.11 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from student where name like 'abc%';
+----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+
| id | select_type | table   | partitions | type  | possible_keys | key      | key_len | ref  | rows | filtered | Extra                 |
+----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+
|  1 | SIMPLE      | student | NULL       | range | idx_name      | idx_name | 63      | NULL |   32 |   100.00 | Using index condition |
+----+-------------+---------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

or前后存在非索引的列导致列索引失效

我们再给student.age字段创建索引:

mysql> create index idx_age on student(age);

如果where子句中的or判断中,不存在非索引列,则索引生效:

mysql> explain select * from student where age = 10 or name = 'a';
+----+-------------+---------+------------+-------------+---------------------------------------+------------------+---------+------+-------+----------+--------------------------------------------+
| id | select_type | table   | partitions | type        | possible_keys                         | key              | key_len | ref  | rows  | filtered | Extra                                      |
+----+-------------+---------+------------+-------------+---------------------------------------+------------------+---------+------+-------+----------+--------------------------------------------+
|  1 | SIMPLE      | student | NULL       | index_merge | idx_age_name_classid,idx_name,idx_age | idx_age,idx_name | 5,63    | NULL | 10007 |   100.00 | Using union(idx_age,idx_name); Using where |
+----+-------------+---------+------------+-------------+---------------------------------------+------------------+---------+------+-------+----------+--------------------------------------------+
1 row in set, 1 warning (0.01 sec)

如果存在非索引列,则索引失效:

mysql> explain select * from student where classid = 10 or name = 'a';
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table   | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | student | NULL       | ALL  | idx_name      | NULL | NULL    | NULL | 499086 |    19.00 | Using where |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

数据库和表的字符集应统一使用utf8mb4

统一使用utf8mb4会拥有更好的兼容性,从而避免字符集转换成生乱码,而且不同字符集进行比较前进行的转换会导致列索引失效。

关联查询优化

本章对左外连接优化和内连接优化的学习笔记进行整理。

数据准备

mysql> create table type(id int(10) unsigned not null auto_increment, card int(10) unsigned not null, primary key(id)) ;
Query OK, 0 rows affected (0.02 sec)

mysql> create table book_card(bookId int(10) unsigned not null auto_increment, card int(10) unsigned not null, primary key(bookId)) ;
Query OK, 0 rows affected (0.01 sec)

然后向两张表插入20条随机数据:

mysql> insert into type(card) values(floor(1 + rand() * 20));
mysql> insert into book_card(card) values(floor(1 + rand() * 20));

左外连接

左外连接的主要优化点在于提升被连接表的扫描效率,写一条简单的左外连接,查看执行计划;

mysql> explain SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book_card ON type.card = book_card.card;
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
| id | select_type | table     | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                                              |
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
|  1 | SIMPLE      | type      | NULL       | ALL  | NULL          | NULL | NULL    | NULL |   20 |   100.00 | NULL                                               |
|  1 | SIMPLE      | book_card | NULL       | ALL  | NULL          | NULL | NULL    | NULL |   20 |   100.00 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
2 rows in set, 2 warnings (0.00 sec)

会发现连接表和被连接表的类型都是all,即全表扫描。为了避免这种情况,我们应该对被连接表的连接键创建索引:

mysql> create index idx_y on book_card(card);
Query OK, 0 rows affected (0.02 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> explain SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book_card ON type.card = book_card.card;
+----+-------------+-----------+------------+------+---------------+-------+---------+------------------------+------+----------+-------------+
| id | select_type | table     | partitions | type | possible_keys | key   | key_len | ref                    | rows | filtered | Extra       |
+----+-------------+-----------+------------+------+---------------+-------+---------+------------------------+------+----------+-------------+
|  1 | SIMPLE      | type      | NULL       | ALL  | NULL          | NULL  | NULL    | NULL                   |   20 |   100.00 | NULL        |
|  1 | SIMPLE      | book_card | NULL       | ref  | idx_y         | idx_y | 4       | review_mysql.type.card |    1 |   100.00 | Using index |
+----+-------------+-----------+------------+------+---------------+-------+---------+------------------------+------+----------+-------------+
2 rows in set, 2 warnings (0.00 sec)

这样一来,就避免了被连接表的全表扫描(类型变成了ref)。
如果我们仅对连接表的连接键建立了索引,那就不能避免被连接表的全表扫描:

mysql> drop index idx_y on book_card;
Query OK, 0 rows affected (0.01 sec)

mysql> create index idx_x on type(card);
Query OK, 0 rows affected (0.02 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> explain SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book_card ON type.card = book_card.card;
+----+-------------+-----------+------------+-------+---------------+-------+---------+------+------+----------+----------------------------------------------------+
| id | select_type | table     | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra                                              |
+----+-------------+-----------+------------+-------+---------------+-------+---------+------+------+----------+----------------------------------------------------+
|  1 | SIMPLE      | type      | NULL       | index | NULL          | idx_x | 4       | NULL |   20 |   100.00 | Using index                                        |
|  1 | SIMPLE      | book_card | NULL       | ALL   | NULL          | NULL  | NULL    | NULL |   20 |   100.00 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-----------+------------+-------+---------------+-------+---------+------+------+----------+----------------------------------------------------+
2 rows in set, 2 warnings (0.00 sec)

内连接

先把book_cardtype中的索引删掉:

mysql> drop index idx_x on type;
mysql> drop index idx_y on book_card;

然后查看两表内连接的执行计划:

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM type JOIN book_card ON type.card=book_card.card;
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
| id | select_type | table     | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                                              |
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
|  1 | SIMPLE      | type      | NULL       | ALL  | NULL          | NULL | NULL    | NULL |   20 |   100.00 | NULL                                               |
|  1 | SIMPLE      | book_card | NULL       | ALL  | NULL          | NULL | NULL    | NULL |   20 |    10.00 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
2 rows in set, 2 warnings (0.00 sec)

先后给type表和book_card表的连接键加上索引,然后再看执行计划:

mysql> create index idx_x on type(card);
Query OK, 0 rows affected (0.02 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM type JOIN book_card ON type.card=book_card.card;
+----+-------------+-----------+------------+------+---------------+-------+---------+-----------------------------+------+----------+-------------+
| id | select_type | table     | partitions | type | possible_keys | key   | key_len | ref                         | rows | filtered | Extra       |
+----+-------------+-----------+------------+------+---------------+-------+---------+-----------------------------+------+----------+-------------+
|  1 | SIMPLE      | book_card | NULL       | ALL  | NULL          | NULL  | NULL    | NULL                        |   20 |   100.00 | NULL        |
|  1 | SIMPLE      | type      | NULL       | ref  | idx_x         | idx_x | 4       | review_mysql.book_card.card |    1 |   100.00 | Using index |
+----+-------------+-----------+------------+------+---------------+-------+---------+-----------------------------+------+----------+-------------+
2 rows in set, 2 warnings (0.00 sec)

mysql> create index idx_y on book_card(card);
Query OK, 0 rows affected (0.03 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> explain SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book_card ON type.card = book_card.card;
+----+-------------+-----------+------------+-------+---------------+-------+---------+------------------------+------+----------+-------------+
| id | select_type | table     | partitions | type  | possible_keys | key   | key_len | ref                    | rows | filtered | Extra       |
+----+-------------+-----------+------------+-------+---------------+-------+---------+------------------------+------+----------+-------------+
|  1 | SIMPLE      | type      | NULL       | index | NULL          | idx_x | 4       | NULL                   |   20 |   100.00 | Using index |
|  1 | SIMPLE      | book_card | NULL       | ref   | idx_y         | idx_y | 4       | review_mysql.type.card |    1 |   100.00 | Using index |
+----+-------------+-----------+------------+-------+---------------+-------+---------+------------------------+------+----------+-------------+
2 rows in set, 2 warnings (0.00 sec)

发现加上索引后,对应的表均避免了全表扫描。此时执行计划中,type表在上面,是驱动表,book_card在下面,是被驱动表,如果我们删除book_card的索引,它就会成为驱动表:

mysql> drop index idx_y on book_card;
Query OK, 0 rows affected (0.01 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> explain SELECT SQL_NO_CACHE * FROM `type` JOIN book_card ON type.card = book_card.card;
+----+-------------+-----------+------------+------+---------------+-------+---------+-----------------------------+------+----------+-------------+
| id | select_type | table     | partitions | type | possible_keys | key   | key_len | ref                         | rows | filtered | Extra       |
+----+-------------+-----------+------------+------+---------------+-------+---------+-----------------------------+------+----------+-------------+
|  1 | SIMPLE      | book_card | NULL       | ALL  | NULL          | NULL  | NULL    | NULL                        |   20 |   100.00 | NULL        |
|  1 | SIMPLE      | type      | NULL       | ref  | idx_x         | idx_x | 4       | review_mysql.book_card.card |    1 |   100.00 | Using index |
+----+-------------+-----------+------------+------+---------------+-------+---------+-----------------------------+------+----------+-------------+
2 rows in set, 2 warnings (0.00 sec)

这时SQL优化器帮我们选择了最优的被驱动表,因为type表的连接键有索引,查询效率高,索引它成为了被驱动表。

小结

  • 保证驱动表的连接键已经有了索引,且能被使用;
  • 连接键的类型在多个表中要保持绝对一致;
  • 左连接时,小表为左表,驱动右表(大表);
  • 内连接时,MySQL会自动将查询效率最高的表作为驱动表;
  • 能够关联的表就直接关联,不用子查询,从而避免查询的趟数;
  • 不建议使用子查询,建议将子查询SQL拆成多次查询,或使用多表连接代替;
  • 衍生表不能建立索引。

子查询优化

子查询效率不高,因为:

  • 执行子查询时,MySQL需要为内存查询语句的查询结果建立一张临时表,而后外查询语句从临时表中查询记录,查询完后再撤销这些临时表。这个过程会消耗过多的CPU和IO资源,产生大量的慢查询;
  • 临时表不能建立索引,因此查询性能较差;
  • 如果子查询返回的结果越多,对其的查询性能就越差。

建议使用多表连接代替子查询,因为多表连接不会建立临时表,也可以通过给被连接表的连接键建立索引来提升查询效率。也不建议使用not innot exists,尽量用left join xx on xx where xx is null替代。

排序优化

优化建议

  • SQL中使用索引是为了在where中避免全表扫描,在order by中避免FileSort排序。尽管某些情况下全表扫描或文件排序不比索引慢,但总的来说我们还是要避免,以提高查询效率;
  • 尽量使用索引完成排序,如果whereorder by是相同的列,则使用单列索引,否则使用联合索引;
  • 如果不能使用索引,则需要对文件排序进行调优。

举例

若有联合索引(a, b, c),则:

  • order by a / order by a, b / order by a, b, c / order by a desc, b desc, c desc均可以使用该联合索引(最长左前缀原则);
  • where a = const order by b, c / where a = const and b = const order by c / where a = const and b > const order by b, c均可以使用该索引,因为where子句中符合最左前缀等值匹配原则;
  • order by a asc, b desc, c desc / where g = const order by b, c / where a = const order by c / where a = const order by a, d / where a in (...) order by b,c均不能使用该索引,原因分别是:排序不一致 / 丢失a索引 / 丢失b索引 / 丢失索引bc / 对于排序来说,多个相等条件也是范围查询

对于student表,我们先删除其上的所有索引,只保留主键:

call proc_drop_index('review_mysql', "student");

场景:查询年龄为30岁、学生编号小于101000的学生,并按照用户名排序。
在没有任何索引的情况下,执行计划如下所示:

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno < 101000 ORDER BY NAME ;
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-----------------------------+
| id | select_type | table   | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra                       |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-----------------------------+
|  1 | SIMPLE      | student | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 499086 |     3.33 | Using where; Using filesort |
+----+-------------+---------+------------+------+---------------+------+---------+------+--------+----------+-----------------------------+
1 row in set, 2 warnings (0.00 sec)

执行计划中出现了全表扫描+文件排序,我们应该进行优化。

方案1:创建联合索引(age, name)

此时where子句中的stuno < 101000会被优化器提前,我们看一下执行计划:

mysql> create index idx_age_name on student(age, name);
Query OK, 0 rows affected (1.28 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
+----+-------------+---------+------------+------+---------------+--------------+---------+-------+-------+----------+------------------------------------+
| id | select_type | table   | partitions | type | possible_keys | key          | key_len | ref   | rows  | filtered | Extra                              |
+----+-------------+---------+------------+------+---------------+--------------+---------+-------+-------+----------+------------------------------------+
|  1 | SIMPLE      | student | NULL       | ref  | idx_age_name  | idx_age_name | 5       | const | 19108 |    33.33 | Using index condition; Using where |
+----+-------------+---------+------------+------+---------------+--------------+---------+-------+-------+----------+------------------------------------+
1 row in set, 2 warnings (0.00 sec)

该SQL执行时间为1.32s:

mysql> SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
+-----+--------+--------+------+---------+
| id  | stuno  | name   | age  | classId |
+-----+--------+--------+------+---------+
| 596 | 100596 | AAdQVd |   30 |     744 |
| 403 | 100403 | bHhNsB |   30 |     378 |
| 475 | 100475 | cJXVKM |   30 |     750 |
| 542 | 100542 | CwAoSw |   30 |     691 |
| 983 | 100983 | dZOUgZ |   30 |     923 |
| 792 | 100792 | gAggmT |   30 |     334 |
| 251 | 100251 | KLBzSR |   30 |     422 |
| 292 | 100292 | MiEzJK |   30 |     856 |
|  65 | 100065 | MTktop |   30 |      97 |
| 382 | 100382 | PgoZfE |   30 |     242 |
| 689 | 100689 | qAFBPu |   30 |     744 |
| 691 | 100691 | QNsBDn |   30 |     139 |
|  81 | 100081 | qntend |   30 |     703 |
| 588 | 100588 | rSlDjm |   30 |     249 |
| 187 | 100187 | xCshJV |   30 |     147 |
| 653 | 100653 | zXsTsg |   30 |     520 |
+-----+--------+--------+------+---------+
16 rows in set, 1 warning (1.32 sec)

方案2:直接创建一个三字段索引

mysql> create index idx_age_stuno_name on student(age, stuno, name);

此时,我们看一下执行计划:

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
+----+-------------+---------+------------+-------+--------------------+--------------------+---------+------+------+----------+---------------------------------------+
| id | select_type | table   | partitions | type  | possible_keys      | key                | key_len | ref  | rows | filtered | Extra                                 |
+----+-------------+---------+------------+-------+--------------------+--------------------+---------+------+------+----------+---------------------------------------+
|  1 | SIMPLE      | student | NULL       | range | idx_age_stuno_name | idx_age_stuno_name | 9       | NULL |   16 |   100.00 | Using index condition; Using filesort |
+----+-------------+---------+------------+-------+--------------------+--------------------+---------+------+------+----------+---------------------------------------+
1 row in set, 2 warnings (0.00 sec)

出现了文件排序,但该SQL的执行时间比方案一的要短:

mysql> SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
+-----+--------+--------+------+---------+
| id  | stuno  | name   | age  | classId |
+-----+--------+--------+------+---------+
| 596 | 100596 | AAdQVd |   30 |     744 |
| 403 | 100403 | bHhNsB |   30 |     378 |
| 475 | 100475 | cJXVKM |   30 |     750 |
| 542 | 100542 | CwAoSw |   30 |     691 |
| 983 | 100983 | dZOUgZ |   30 |     923 |
| 792 | 100792 | gAggmT |   30 |     334 |
| 251 | 100251 | KLBzSR |   30 |     422 |
| 292 | 100292 | MiEzJK |   30 |     856 |
|  65 | 100065 | MTktop |   30 |      97 |
| 382 | 100382 | PgoZfE |   30 |     242 |
| 689 | 100689 | qAFBPu |   30 |     744 |
| 691 | 100691 | QNsBDn |   30 |     139 |
|  81 | 100081 | qntend |   30 |     703 |
| 588 | 100588 | rSlDjm |   30 |     249 |
| 187 | 100187 | xCshJV |   30 |     147 |
| 653 | 100653 | zXsTsg |   30 |     520 |
+-----+--------+--------+------+---------+
16 rows in set, 1 warning (0.00 sec)

结论:

  • 若两个索引同时存在,MySQL会自动选择最优方案,该选择会随着数据量的变化而变化;
  • 如果wheregroup by / order by的字段出现了二选一情况,优先观察where字段的过滤量:如果过滤的数据足够多,而需要排序的数据并不多时,优先把索引放在where字段上;反之亦然。

上面案例中,也可以建立联合索引(age, stuno)

mysql> create index idx_age_stuno on student(age, stuno);
Query OK, 0 rows affected (0.93 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
+----+-------------+---------+------------+-------+---------------+---------------+---------+------+------+----------+---------------------------------------+
| id | select_type | table   | partitions | type  | possible_keys | key           | key_len | ref  | rows | filtered | Extra                                 |
+----+-------------+---------+------------+-------+---------------+---------------+---------+------+------+----------+---------------------------------------+
|  1 | SIMPLE      | student | NULL       | range | idx_age_stuno | idx_age_stuno | 9       | NULL |   16 |   100.00 | Using index condition; Using filesort |
+----+-------------+---------+------------+-------+---------------+---------------+---------+------+------+----------+---------------------------------------+
1 row in set, 2 warnings (0.00 sec)

mysql> SELECT SQL_NO_CACHE * FROM student WHERE age = 30 AND stuno <101000 ORDER BY NAME ;
+-----+--------+--------+------+---------+
| id  | stuno  | name   | age  | classId |
+-----+--------+--------+------+---------+
| 596 | 100596 | AAdQVd |   30 |     744 |
| 403 | 100403 | bHhNsB |   30 |     378 |
| 475 | 100475 | cJXVKM |   30 |     750 |
| 542 | 100542 | CwAoSw |   30 |     691 |
| 983 | 100983 | dZOUgZ |   30 |     923 |
| 792 | 100792 | gAggmT |   30 |     334 |
| 251 | 100251 | KLBzSR |   30 |     422 |
| 292 | 100292 | MiEzJK |   30 |     856 |
|  65 | 100065 | MTktop |   30 |      97 |
| 382 | 100382 | PgoZfE |   30 |     242 |
| 689 | 100689 | qAFBPu |   30 |     744 |
| 691 | 100691 | QNsBDn |   30 |     139 |
|  81 | 100081 | qntend |   30 |     703 |
| 588 | 100588 | rSlDjm |   30 |     249 |
| 187 | 100187 | xCshJV |   30 |     147 |
| 653 | 100653 | zXsTsg |   30 |     520 |
+-----+--------+--------+------+---------+
16 rows in set, 1 warning (0.00 sec)

filesort调优策略

  • 尝试提高sort_buffer_size
  • 尝试提高max_length_for_sort_data(在1024字节和8192字节之间调整);
  • order by时不要select *,最好只查询需要的字段。

分组优化

  • 分组使用索引的原则跟order b几乎一致,即使分组没有过滤条件用到索引,也可以直接使用索引;
  • group by先排序再分组,遵照索引的最佳左前缀法则;
  • 如果无法使用索引列,增大sort_buffer_sizemax_length_for_sort_data值;
  • where效率高于having,能在where中限定的条件就不要限定在having中;
  • 减少使用order byorder bygroup bydistinct这些语句比较消耗CPU;
  • 如果包含了order bygroup bydistinct这些查询语句,尽量保持where过滤出来的数据在1000行以内。

分页查询优化

针对以下SQL:SELECT * FROM student LIMIT 2000000, 10;有两种优化方式:

优化思路一

在索引上完成排序分页操作,最后通过主键关联到主查询,查询所需要的其他列的内容:

mysql> EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a WHERE t.id = a.id;
+----+-------------+------------+------------+--------+---------------+---------+---------+------+--------+----------+-------------+
| id | select_type | table      | partitions | type   | possible_keys | key     | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+------------+------------+--------+---------------+---------+---------+------+--------+----------+-------------+
|  1 | PRIMARY     | <derived2> | NULL       | ALL    | NULL          | NULL    | NULL    | NULL | 499086 |   100.00 | NULL        |
|  1 | PRIMARY     | t          | NULL       | eq_ref | PRIMARY       | PRIMARY | 4       | a.id |      1 |   100.00 | NULL        |
|  2 | DERIVED     | student    | NULL       | index  | NULL          | PRIMARY | 4       | NULL | 499086 |   100.00 | Using index |
+----+-------------+------------+------------+--------+---------------+---------+---------+------+--------+----------+-------------+
3 rows in set, 1 warning (0.00 sec)

优化思路二

limit转换成某个位置的查询,此方案适用于主键自增的表,从而避免回表:

mysql> EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table   | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra       |
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | student | NULL       | range | PRIMARY       | PRIMARY | 4       | NULL |    1 |   100.00 | Using where |
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

优先考虑覆盖索引

覆盖索引的定义

在非聚簇索引B+树中,叶子结点存储了它们索引的数据。如果能通过读取索引就可以得到想要的数据,就不用回表读取行了。因此,如果一个索引包含了满足查询结果的数据,该索引就是覆盖索引。

覆盖索引的利弊

好处:避免回表;把随机IO变成顺序IO,提高了查询效率。
坏处:维护索引需要代价。

覆盖索引的出现,可能会导致索引失效案例中一些情况被颠覆(如不等于、左模糊等),特别是select字段中的字段被索引列覆盖时:

mysql> create index idx_age_name on student(age, name);
Query OK, 0 rows affected (1.46 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> explain select age from student where age != 10;
+----+-------------+---------+------------+-------+------------------------------+-----------------+---------+------+--------+----------+--------------------------+
| id | select_type | table   | partitions | type  | possible_keys                | key             | key_len | ref  | rows   | filtered | Extra                    |
+----+-------------+---------+------------+-------+------------------------------+-----------------+---------+------+--------+----------+--------------------------+
|  1 | SIMPLE      | student | NULL       | range | idx_age_classId,idx_age_name | idx_age_classId | 5       | NULL | 432453 |   100.00 | Using where; Using index |
+----+-------------+---------+------------+-------+------------------------------+-----------------+---------+------+--------+----------+--------------------------+
1 row in set, 1 warning (0.01 sec)

mysql> explain select name, id from student where name like '%a';
+----+-------------+---------+------------+-------+---------------+--------------+---------+------+--------+----------+--------------------------+
| id | select_type | table   | partitions | type  | possible_keys | key          | key_len | ref  | rows   | filtered | Extra                    |
+----+-------------+---------+------------+-------+---------------+--------------+---------+------+--------+----------+--------------------------+
|  1 | SIMPLE      | student | NULL       | index | NULL          | idx_age_name | 68      | NULL | 499086 |    11.11 | Using where; Using index |
+----+-------------+---------+------------+-------+---------------+--------------+---------+------+--------+----------+--------------------------+
1 row in set, 1 warning (0.00 sec)

给字符串添加索引

前缀索引

如果要给某个字符串字段添加索引,则最好使用前缀索引,比如:

alter table teacher add index index2(email(6))

上例就是取email字段前6个字符作为索引,这样既可以节省空间,又不用增加太多的额外查询成本。

前缀索引对覆盖索引的影响

使用前缀索引就不用覆盖索引去优化查询性能了。

索引下推

索引下推(Index Condition Pushdown, ICP)是一种在存储引擎层使用索引过滤数据的优化方式,可以减少存储引擎访问基表的次数,以及MySQL服务器访问存储引擎的次数。

使用前后的扫描过程

使用ICP前的扫描过程

storage层:只将满足索引键条件的索引记录对应的整行数据取出,返回给server层;
server层:对返回的数据,使用where条件过滤。
在这里插入图片描述在这里插入图片描述

使用ICP扫描的过程

storage层:首先将索引键条件满足的索引记录区间确定,然后在索引上使用索引过滤器进行过滤。根据满足的索引过滤条件的索引记录去回表,取出整行记录返回给server层。不满足者直接丢弃。
server层:对返回的数据,使用where条件进行最后的过滤。
在这里插入图片描述
在这里插入图片描述

使用前后的成本差别

  • 使用前,存储层多返回了需要被索引过滤器过滤掉的整行记录;
  • 使用后,只返回满足索引过滤条件的记录,省去了不满足者的回表和传给server层的成本。

ICP的加速效果取决于存储引擎内通过ICP筛选掉的数据比例。

ICP的使用条件

  • 只能用于非主键索引;
  • explain显示的执行计划中type值为rangerefeq_refref_or_null
  • where条件必须在索引列中;
  • 存储引擎为MyISAMInnoDB
  • 5.7版本开始支持分区表的ICP;
  • 若SQL使用覆盖索引,则不支持ICP。

ICP使用案例

对于以下SQL:

SELECT * FROM tuser WHERE NAME LIKE '张%' AND age = 10 AND ismale = 1;

age是索引列,那么ICP过程如下图所示:
在这里插入图片描述如果不使用ICP,那么那两条age不为10的记录,也会参与回表:
在这里插入图片描述

普通索引和唯一索引

以下表为例:

create table test(id int primary key, k int not null, name varchar(16), index (k))engine=InnoDB;

表中五条数据(R1~R5)的(id, k)值分别为(100, 1)(200, 2)(300, 3)(500, 5)(600, 6)

查询过程

假设查询语句为select id from test where k = 5;。那么:

  • 对于普通索引来说,查找到满足条件的第一个记录(5, 500)后,需要查找下一条记录,直到找到第一个不满足k = 5条件的记录;
  • 对于唯一索引来说,因为索引定义了唯一性,查到第一个满足条件的记录后,就会停止检索。

不过实际上,这两种方法带来的性能差距是微乎其微的。

更新过程

先介绍一下change buffer(更新缓存)。当需要更新一个数据页时,如果数据页在内存中就直接更新,否则,在不影响数据一致性的前提下,InnoDB会把更新操作缓存在更新缓存中,从而避免从磁盘中读入该数据页。如果以后的某次查询需要访问这个数据页,InnoDB会将该数据页读入内存,然后执行更新缓存中和这个页有关的操作,从而保证数据逻辑的正确性。
将更新缓存中的操作应用到原始数据页得到最新结果的过程称之为merge,除了访问该数据页会触发merge外,系统的后台线程也会定期merge。在数据库正常关闭的过程中,也会执行merge
如果能够将更新操作先记录在更新缓存中,可以减少对磁盘的IO,从而明显提升语句的执行速度,并且还可以避免占用过多内存,以提高内存利用率。
更新缓存只能用在普通索引中,唯一索引的更新不能使用更新缓存。

change buffer的使用场景

  • 普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,建议尽量选择普通索引 ;
  • 在实际使用中会发现, 普通索引和更新缓存的配合使用,对于数据量大的表的更新优化还是很明显的;
  • 如果所有的更新后面,都马上伴随着对这个记录的查询 ,那么你应该关闭更新缓存 。而在其他情况下,更新缓存都能提升更新性能;
  • 由于唯一索引用不上change buffer的优化机制,因此如果 业务可以接受 ,从性能角度出发建议优先考虑非唯一索引。但是如果"业务可能无法确保"的情况下,怎么处理呢?

首先, 业务正确性优先 。我们的前提是“业务代码已经保证不会写入重复数据”的情况下,讨论性能问题。如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。这种情况下,本节的意义在于,如果碰上了大量插入数据慢、内存命中率低的时候,给你多提供一个排查思路。
然后,在一些“ 归档库 ”的场景,你是可以考虑使用唯一索引的。比如,线上数据只需要保留半年,然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率,可以考虑把表里面的唯一索引改成普通索引。

其他查询优化策略

exists和in的区分

针对以下语句:

select * from a where cc in (select cc from b);                    # 1
select * from a where exists (select cc from b where b.cc = a.cc); # 2

结论:
如果a < b,则用exists,因为exists相当于外表驱动内表;
如果a > b,则用in,因为in相当于内表驱动外表。

count(*)、count(1)和count(字段)的效率

  • count(*)count(1)没有本质区别,都是对符合条件的所有结果进行统计;

  • 效率对比:

    • 如果是MyISAM引擎,count(*)count(1)都是O(1)时间复杂度,因为每张MyISAM表的meta信息中都存储了row_count值,数据一致性则由表级锁来保证;
    • 如果是InnoDB引擎,由于InnoDB支持事务,采用了行级锁和MVCC机制,因此需要扫描全表,采用循环+计数的方式完成统计;
  • InnoDB中,若采用count(字段)统计行数,要尽量采用非主键索引。因为主键采用的是聚簇索引,包含的信息量明显大于非主键索引。对于count(*)count(1),因为它们只要统计行数,所以系统会自动采用占用空间更小的非主键索引进行统计。如果有多个非主键索引,会使用key_len小的非主键索引进行扫描。如果没有非主键索引,才会通过主键索引进行统计。

关于select(*)

建议明确查询字段,MySQL在解析的过程中,会通过查询数据字典将*按序转换沉所有列名,这会大大耗费资源和时间,而且无法使用覆盖索引。

limit 1对优化的影响

针对进行全表扫描的语句,如果确定结果集只有一条,则加上limit 1会导致找到一条结果后就不会继续扫描,从而加快查询速率。

如果数据表已经对字段建立了唯一索引,那么可以通过该唯一索引进行查询,不会全表扫描,也不用加limit 1

多使用commit

只要有可能,程序中就尽量多使用commit,这样可以释放以下资源:

  1. 回滚段上用于恢复数据的信息;
  2. 程序语句获得的锁;
  3. 重做日志缓存或撤销日志缓存中的空间;
  4. 管理上述资源的开销。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/673553.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

探索“AI+算力”:加速创新与增长的无限潜力

随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;技术正成为各行各业的关注焦点。在这个充满激情和创新的时代&#xff0c;"AI算力"的结合应用成为科技行业的热门话题&#xff0c;甚至引发出"AI算力最强龙头"的网络热门等式。本文将探讨…

数据结构-哈希-哈希表实现

哈希表实现 一&#xff0c;哈希概念哈希概念常见哈希函数哈希冲突哈希冲突的解决 二&#xff0c;闭散列实现闭散列的结构插入查找删除闭散列总结 三&#xff0c;哈希桶实现哈希桶的结构插入查找删除析构拷贝构造赋值运算符重载 四&#xff0c;哈希表总结开散列与闭散列的比较哈…

设备虚拟化基础 - PCI

目录 1. 配置空间概念和作用 2. 通过配置空间发现设备 3. Linux读取PCI配置空间接口 4. 内核中具体读取配置空间实例 5. Virtion设备自定义空间 6. Linux读取Capabilities List代码解析 1. 配置空间概念和作用 详细的定义可以参考PCI Spec的第六章《Configuration Space…

嵌入式操作系统(嵌入式学习)

嵌入式操作系统 嵌入式操作系统是什么&#xff1f;嵌入式操作系统有哪些&#xff1f;常用的嵌入式操作系统及其特点对初学者的建议 嵌入式操作系统是什么&#xff1f; 嵌入式操作系统是一种专门设计和优化用于嵌入式系统的操作系统。它是在资源受限的嵌入式设备上运行的操作系…

No CMAKE_Swift_COMPILER could be found问题解决

编译OpenCV的IOS平台包,出错: CMake Error at CMakeLists.txt:20 (enable_language): No CMAKE_Swift_COMPILER could be found. 出错定位,原因是启用Swift语言时没有找到CMAKE_Swift_COMPILER变量 CMAKE官方文档说明启用Swift语言方法 cmake 3.15开始支持swift 查找swift …

简单介绍html/javascript、ajax应用

文章目录 前言1、html1.1.、html实例1.2、HTML文档的后缀名1.3、HTML 编辑器1.4、HTML 标题1.5、HTML 段落1.6、HTML 链接1.7、HTML 图像1.8、HTML 表格1.8.1、HTML 表格实例1.8.2、HTML 表格和边框1.8.3、HTML 表格表头 1.9、HTML <input> 标签1.10、Bootstrap 教程1.10…

开发常用命令合集(Docker、K8s、Linux、Windows等)

开发常用命令合集&#xff08;Docker、K8s、Linux、Windows等&#xff09; 1 Docker 详情查看&#xff1a;https://blog.csdn.net/weixin_45565886/article/details/130130361 1.1 基础命令 ①拉取、查看、删除镜像 docker pull nginx #下载最新版镜像名:版本名&#xff08…

元数据驱动架构的官方数据空间设计

淘宝开放平台是阿里与外部生态互联互通的重要开放途径&#xff0c;通过开放的产品技术把阿里经济体一系列基础服务&#xff0c;像水、电、煤一样输送给我们的商家、开发者、社区媒体以及其他合作伙伴&#xff0c;推动行业的定制、创新、进化, 并最终促成新商业文明生态圈。 开放…

PHP简单入门

PHP是一种流行的服务器端编程语言&#xff0c;被广泛用于Web开发。许多著名的网站和应用程序都是使用PHP编写的&#xff0c;例如Facebook、Wikipedia和WordPress等。本篇文章将为您介绍如何入门PHP编程。 环境配置 在开始使用PHP之前&#xff0c;需要先配置开发环境。要在本…

3ds MAX绘制花坛

绘制一个八边形花坛&#xff1a; 首先绘制一个八边形&#xff0c;并将它转换为可编辑样条线&#xff1a; 在前视图中绘制一个长方形&#xff0c;参数如图&#xff0c;可以按照喜好变换弧度等 注意&#xff0c;长方形的宽要和八边形的边长对应。 接下来我们通过旋转创建完整的…

测试流程体系

目录&#xff1a; 软件测试基本概念软件测试模型软件测试工作流程测试左移和测试右移 1.软件测试基本概念 通过手工或者工具对"被测对象"进行测试验证实际结果与预期结果之间是否存在差异 软件测试作用 通过测试工作可以发现并修复软件当中存在的缺陷&#xff…

环状支撑佩戴,骨传导新体验:南卡OE骨传导开放式耳机

骨传导耳机究竟是“黑科技”还是“智商税”呢&#xff1f;我想近几年的市场反馈就能给出答案。尤其是在户外运动场景下&#xff0c;骨传导耳机的综合体验都要比入耳式耳机更好一些。最近国产品牌南卡推出了一款新形态的骨传导耳机&#xff0c;南卡OE&#xff0c;它通过改良耳机…

【二叉树part03】| 104.二叉树的最大深度、559.n叉树的最大深度、111.二叉树的最小深度、222.完全二叉树的节点个数

目录 ✿LeetCode104.二叉树的最大深度❀ ✿LeetCode559.n叉树的最大深度❀ ✿LeetCode111.二叉树的最小深度❀ ✿LeetCode222.完全二叉树的节点个数❀ ✿LeetCode104.二叉树的最大深度❀ 链接&#xff1a;104.二叉树的最大深度 给定一个二叉树&#xff0c;找出其最大深度…

[Leetcode] 0014. 最长公共前缀

14. 最长公共前缀 img { margin: auto; display: block } 点击上方&#xff0c;跳转至Leetcode 题目描述 编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀&#xff0c;返回空字符串 ""。 示例 1&#xff1a; 输入&#xff1a;strs ["flowe…

一道有点仙的数位dp 方伯伯的商场之旅

link 大意&#xff1a; 思路&#xff1a; 先来考虑单个数字的情况 其实首先可以将题意稍微转化一下&#xff0c;就是移动一个石子的代价是其移动的距离。这样的话&#xff0c;显然我们的策略就是对于每一个石子&#xff0c;一次性将其移动到正确的位置&#xff0c;毕竟能一步…

Axure教程—选择器

本文将教大家如何用AXURE中的动态面板制作选择器 一、效果 预览地址&#xff1a;https://zhihp9.axshare.com 二、功能 用户点击选择框&#xff0c;可以显示下拉选择器&#xff0c;点击后选择对应项。 三、制作 1、选择框 拖入一个矩形&#xff0c;设置大小为16438&#xff…

macOS Ventura 13.4.1 (22F82) Boot ISO 原版可引导镜像下载

macOS Ventura 13.4.1 (22F82|22F2083) Boot ISO 原版可引导镜像下载 本站下载的 macOS 软件包&#xff0c;既可以拖拽到 Applications&#xff08;应用程序&#xff09;下直接安装&#xff0c;也可以制作启动 U 盘安装&#xff0c;或者在虚拟机中启动安装。另外也支持在 Wind…

EMC学习笔记(六)优选布线层

EMC学习笔记&#xff08;六&#xff09;优选布线层 1. 表层与内层走线的比较1.1 微带线&#xff08;microsstrip&#xff09;1.2 带状线&#xff08;stripline&#xff09;1.3 微带线与带状线的比较 2.布线层的优先级别 对于时钟、高频、高速、小、弱信号而言&#xff0c;选择合…

React封装axios请求

1、前言 因为最近在进行老系统用新框架改造&#xff0c;正好用到了react&#xff0c;就顺便整理了一下react中对axios进行封装的相关知识点和步骤。 2、如何封装 可以参考一下chat gpt给出的回答。 我大概总结一下&#xff0c;其实就是使用axios.create创建一个axios的实例&…

基于座位预约管理系统的设计与实现

前言&#xff1a; 各位小伙伴儿们端午节快乐&#xff0c;本篇文章为大家带来一份基于ssm技术搭建的项目&#xff0c;正在学习这块技术的童靴们可以体验一下哦&#xff0c;在资源中可获取源码 ~ 以下正文开始&#xff1a; 文章目录 需求分析功能模块项目架构图首页部分Controll…