视觉SLAM十四讲——ch13代码祥读(设计SLAM系统)

news2025/1/12 5:55:52

视觉SLAM十四讲——ch13学习过程及代码祥读

  • 0. 可以下载文件的网址
  • 1. 重读《视觉SLAM十四讲》ch13实践设计SLAM系统
  • 2. 主函数的阅读
  • 3. config配置文件
  • 4. visual_odometry.cpp视觉里程计文件
  • 5. frontend.cpp前端文件(重要文件1)
  • 6. backend.cpp后端文件(重要文件2)

0. 可以下载文件的网址

本文主要是介绍比较主要的文件,已经对每个文件进行了详细阅读和注释,如果需要,可以参考:https://download.csdn.net/download/qq_44164791/87935340
实践用到的数据可以参考的下载地址:
https://www.cvlibs.net/datasets/kitti/eval_odometry.php
如果需要相对应的位姿文件,也就是如果想绘制出完整轨迹,可以参考:
https://download.csdn.net/download/qq_44164791/87935348
主要文件

1. 重读《视觉SLAM十四讲》ch13实践设计SLAM系统

这个过程参考了以下文章:
https://zhuanlan.zhihu.com/p/372956625

2. 主函数的阅读

run_kitti_stereo.cpp文件
我们从开头开始阅读,可以看到第10行我们需要用的配置文件,可以参考3中的内容。
然后可以看到第18行,我们可以看到自己定义的一个类,可以在头文件myslam/visual_odometry.h中查看。
接着我们可以看到第22行的初始化,直接转到visual_odometry.cpp文件,也就是本文的目录4。

//
// Created by gaoxiang on 19-5-4.
//
//gflags是一个谷歌的库https://zhuanlan.zhihu.com/p/369214077,官方文档库为https://gflags.github.io/gflags/
#include <gflags/gflags.h>
#include "myslam/visual_odometry.h"

//DEFINE_string参数1是一个变量;参数2是用户指定,给到参数1的;参数3,类似一个说明为这个变量的提示信息
//在程序中使用DEFINE_XXX函数定义的变量时,需要在每个变量前加上FLAGS_前缀。
DEFINE_string(config_file, "/home/fighter/project/slambook2/ch14/config/default.yaml", "config file path");

int main(int argc, char **argv) {
    //怎么通过命令行设置?只需要在main函数后,添加::gflags::ParseCommandLineFlags函数(google::ParseCommandLineFlags),就能解析命令行,即解析argc、argv参数。
    //为了能够解析命令行的参数
    google::ParseCommandLineFlags(&argc, &argv, true);

    //首先实例化了一个VisualOdometry类的类指针vo,传入config的地址
    myslam::VisualOdometry::Ptr vo(
        new myslam::VisualOdometry(FLAGS_config_file));

    //VO初始化,assert 只在 debug 模式下存在,判断是否初始化成功
    assert(vo->Init() == true);
    //运行Run函数
    vo->Run();

    return 0;
}

3. config配置文件

default.yaml文件:

%YAML:1.0
# data
# the tum dataset directory, change it to yours! 
# dataset_dir: /media/xiang/Data/Dataset/Kitti/dataset/sequences/00
dataset_dir: /home/fighter/slam/slambook2/ch13/00

# camera intrinsics
# 相机内参数,像素坐标系和成像平面之间,相差一个缩放和一个原点的平移,设在u轴上缩放了a倍,在v轴上缩放了b倍。同时原点平移了[cx,cy];
# 把af合并成fx,把bf合并成fy;f为焦距
# 所以,相机内参数为fx,fy,cx,cy
camera.fx: 517.3
camera.fy: 516.5
camera.cx: 325.1
camera.cy: 249.7

num_features: 150
num_features_init: 50
num_features_tracking: 50

4. visual_odometry.cpp视觉里程计文件

visual_odometry.cpp
从上向下阅读,第39行,可以跳转到frontend.cpp文件,参考本文目录5.
同样,第40行,可以跳至backend.cpp文件,参考本目录的6.

//
// Created by gaoxiang on 19-5-4.
//
#include "myslam/visual_odometry.h"
#include <chrono>
#include "myslam/config.h"

namespace myslam {

//VisualOdometry函数中的config_path继承自config_file_path_的config_path???继承不继承不清楚,但二者是相等的
//C++Primer的p237下
//VisualOdometry中的config_path为形参,使用string对象初始化config_file_path_
VisualOdometry::VisualOdometry(std::string &config_path)
    : config_file_path_(config_path) {}

//视觉里程计初始化
bool VisualOdometry::Init() {
    // read from config file(调用Config::SetParameterFile()函数读取配置文件,如果找不到对应文件(如果上一步没有成功建文件)就返回false。)
    //config.cpp
    if (Config::SetParameterFile(config_file_path_) == false) {
        return false;
    }

    //yaml文件中dataset_dir: /home/xiaoduan/slambook2/ch14/00;此时,dataset_锁定到了数据文件夹
    dataset_ =
        Dataset::Ptr(new Dataset(Config::Get<std::string>("dataset_dir")));
    //通过Dataset::Init()函数设置相机的内参数,以及双目相机的外参数;
    //检测两个值是否相等,即建车是否初始化成功,如果不成立,输出信息后将退出;
    CHECK_EQ(dataset_->Init(), true);

    //初始化成功后,意味着能够正确获取数据,然后进行其他操作
    // create components and links(创建组件和链接)
    /*
        实例化并初始化frontend_,backend_,map_,viewer_四个对象。
        并且创建3个线程之间的联系,其实就是shared_ptr的初始化,这里和ORB-SLAM2的初始化创建线程的过程很像哈。
        但是实际上在这个工程里面和SLAM相关的只有两个线程,前端一个线程,后端一个线程,还有一个线程是显示用的,
        ORBSLAM里面总共有4个线程,前端线程、后端线程、回环线程+显示线程。我们看下初始化具体做了啥,我们看下每个类的构造函数。
    */
    frontend_ = Frontend::Ptr(new Frontend);
    backend_ = Backend::Ptr(new Backend);
    map_ = Map::Ptr(new Map);
    viewer_ = Viewer::Ptr(new Viewer);

    frontend_->SetBackend(backend_);
    frontend_->SetMap(map_);
    frontend_->SetViewer(viewer_);
    frontend_->SetCameras(dataset_->GetCamera(0), dataset_->GetCamera(1));

    backend_->SetMap(map_);
    backend_->SetCameras(dataset_->GetCamera(0), dataset_->GetCamera(1));

    viewer_->SetMap(map_);

    return true;
}

//视觉里程计运行
void VisualOdometry::Run() {
    while (1) {
        LOG(INFO) << "VO is running";
        if (Step() == false) {  //如果步骤错误,结束循环也就是结束运行
            break;
        }
    }

    //遍历完所有数据后,结束后端和可视化线程
    backend_->Stop();
    viewer_->Close();

    LOG(INFO) << "VO exit";
}

bool VisualOdometry::Step() {
    Frame::Ptr new_frame = dataset_->NextFrame();           //NextFrame() 就是从数据集里面读取一下帧图像,然后调用 Frame::CreateFrame() 函数为每一帧赋一个id号 。
    if (new_frame == nullptr) return false;     //如果没有读取到数据,则直接结束

    auto t1 = std::chrono::steady_clock::now();         //记录当前时间点
    bool success = frontend_->AddFrame(new_frame);      //利用success记录是否成功插入帧
    auto t2 = std::chrono::steady_clock::now();         //记录当前时间点,前后时间的记录来输出插入帧所花费的时间
    auto time_used =
        std::chrono::duration_cast<std::chrono::duration<double>>(t2 - t1);
    LOG(INFO) << "VO cost time: " << time_used.count() << " seconds.";
    return success;
}

}  // namespace myslam

5. frontend.cpp前端文件(重要文件1)

frontend.cpp

//
// Created by gaoxiang on 19-5-2.
//

#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc_c.h>

#include "myslam/algorithm.h"
#include "myslam/backend.h"
#include "myslam/config.h"
#include "myslam/feature.h"
#include "myslam/frontend.h"
#include "myslam/g2o_types.h"
#include "myslam/map.h"
#include "myslam/viewer.h"

namespace myslam {

/*
    也就是前端的初始化主要就是根据配置文件(Config类) 的参数来创建GFTT的特征点提取器。
    num_features_是每帧最多提取的特征点数量,
    此外还保存一个参数num_features_init_,这个参数在后面的地图初始化中会用到。
    GFTTDetector特征点提取器
*/
Frontend::Frontend() {
    /*
        在 ”光流跟踪“ 中,使用了 Harris 角点作为 LK 光流跟踪输入点。角点定义为在两个方向上均有较大梯度变化的小区域,使用自相关函数描述。
        自相关函数为为图像平移前后某一个区域的相似度度量。图像可以看作二维平面上的连续函数,使用泰勒级数可以将自相关函数转换为自相关矩阵。
        通过分析自相关矩阵的特征值,可以判断在该区域内各个方向上梯度变化情况,从而决定是否为角点。
        GFTT是一个特征检测器,是Harris和GFTT检测算法检测特征值二合一的方法,具体使用哪一个由输入的参数决定
            特点:只提取特征点,不提取描述子
        static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
                                             int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
        maxCorners 决定提取关键点最大个数;
        qualityLevel 表示关键点强度阈值,只保留大于该阈值的关键点(阈值 = 最强关键点强度 * qualityLevel);
        minDistance 决定关键点间的最小距离;
        blockSize 决定自相关函数累加区域,也决定了 Sobel 梯度时窗口尺寸;
        useHarrisDetector 决定使用 Harris 判定依据还是 Shi-Tomasi 判定依据;
        k 仅在使用 Harris 判定依据时有效;
    */
    gftt_ =
        cv::GFTTDetector::create(Config::Get<int>("num_features"), 0.01, 20);//num_features是什么???
    num_features_init_ = Config::Get<int>("num_features_init");
    num_features_ = Config::Get<int>("num_features");
}

//增加帧
bool Frontend::AddFrame(myslam::Frame::Ptr frame) {
    //给到当前帧的副本是为了线程间互斥???
    current_frame_ = frame;

    //判断前端状态
    switch (status_) {
        //如果前段状态是初始化则执行立体初始化
        case FrontendStatus::INITING:
            StereoInit();
            break;
        //如果好继续向下
        case FrontendStatus::TRACKING_GOOD:
        //如果不好
        case FrontendStatus::TRACKING_BAD:
            //追踪
            Track();    //跟踪结束返回true
            break;
        case FrontendStatus::LOST:
            Reset();
            break;
    }

    last_frame_ = current_frame_;//对当前帧操作完毕,将当前帧置为上一帧
    return true;
}

//正常状态下的跟踪
bool Frontend::Track() {
    //用上一帧位姿获得当前位姿估计的初始值
    if (last_frame_) {
        current_frame_->SetPose(relative_motion_ * last_frame_->Pose());    //匀速模型
    }
    
    //LK光流匹配上一帧,返回的是匹配到的成对点的数量
    int num_track_last = TrackLastFrame();          //根据上一帧的特征点,用光流匹配当前特征点位置
    tracking_inliers_ = EstimateCurrentPose();      //G2O图优化估计当前帧位姿;G2O是图优化的库,图优化——————>非线性优化+图论

    //根据追踪到的正常数值数量和设定的正常追踪数量50相比,根据比较判断确定当前状态的复本?
    if (tracking_inliers_ > num_features_tracking_) {       //跟踪点大于50个则状态较好
        // tracking good
        status_ = FrontendStatus::TRACKING_GOOD;            // 修改标志位
    } else if (tracking_inliers_ > num_features_tracking_bad_) {//跟踪点小于50个大于20个则状态较坏
        // tracking bad
        status_ = FrontendStatus::TRACKING_BAD; //修改标志位
    } else {
        // lost
        status_ = FrontendStatus::LOST;         //丢失
    }

    InsertKeyframe();   //将当前帧设置为关键帧并将其插入后端
    relative_motion_ = current_frame_->Pose() * last_frame_->Pose().inverse();

    if (viewer_) viewer_->AddCurrentFrame(current_frame_);//对可视化同样加入当前帧
    return true;
}

//插入关键帧
bool Frontend::InsertKeyframe() {
    // 关键点足够多,还不需要修改关键帧
    if (tracking_inliers_ >= num_features_needed_for_keyframe_) {
        // still have enough features, don't insert keyframe
        return false;
    }
    //光流追踪到的特征点少于80个的时间插入关键帧
    // current frame is a new keyframe
    //当前帧设置为关键帧
    current_frame_->SetKeyFrame();
    //将当前帧插入到地图中
    map_->InsertKeyFrame(current_frame_);

    LOG(INFO) << "Set frame " << current_frame_->id_ << " as keyframe "
              << current_frame_->keyframe_id_;

    //将新增的关键帧内的地图点
    SetObservationsForKeyFrame();

    //出现关键帧后需要重新匹配
    //提取当前帧(左)关键点
    DetectFeatures();  // detect new features

    // track in right image
    FindFeaturesInRight();
    // triangulate map points    // 三维重建
    TriangulateNewPoints();
    // update backend because we have a new keyframe
    backend_->UpdateMap();

    if (viewer_) viewer_->UpdateMap();

    return true;    //成功插入会返回true
}

//将关键帧的特征点添加到地图
void Frontend::SetObservationsForKeyFrame() {
    for (auto &feat : current_frame_->features_left_) {
        auto mp = feat->map_point_.lock();
        if (mp) mp->AddObservation(feat);//加入观测到的特征点
    }
}

//三角化新的关键点
int Frontend::TriangulateNewPoints() {
    std::vector<SE3> poses{camera_left_->pose(), camera_right_->pose()};    //建立一个位姿容器,里面有左右相机观测到的位姿
    SE3 current_pose_Twc = current_frame_->Pose().inverse();        //当前帧的位姿矩阵转换?
    int cnt_triangulated_pts = 0;
    //遍历整个地图所有的左侧图像地图点
    for (size_t i = 0; i < current_frame_->features_left_.size(); ++i) {
        if (current_frame_->features_left_[i]->map_point_.expired() &&
            current_frame_->features_right_[i] != nullptr) {
            // 左图的特征点未关联地图点且存在右图匹配点,尝试三角化————>图像构建初始化地图和估计的时候都使用到了三角化
            std::vector<Vec3> points{
                camera_left_->pixel2camera(
                    Vec2(current_frame_->features_left_[i]->position_.pt.x,
                         current_frame_->features_left_[i]->position_.pt.y)),
                camera_right_->pixel2camera(
                    Vec2(current_frame_->features_right_[i]->position_.pt.x,
                         current_frame_->features_right_[i]->position_.pt.y))};
            Vec3 pworld = Vec3::Zero();

            if (triangulation(poses, points, pworld) && pworld[2] > 0) {
                auto new_map_point = MapPoint::CreateNewMappoint();
                pworld = current_pose_Twc * pworld;
                new_map_point->SetPos(pworld);
                new_map_point->AddObservation(
                    current_frame_->features_left_[i]);
                new_map_point->AddObservation(
                    current_frame_->features_right_[i]);

                current_frame_->features_left_[i]->map_point_ = new_map_point;
                current_frame_->features_right_[i]->map_point_ = new_map_point;
                map_->InsertMapPoint(new_map_point);
                cnt_triangulated_pts++;     
            }
        }
    }
    LOG(INFO) << "new landmarks: " << cnt_triangulated_pts;
    return cnt_triangulated_pts;//返回所有三角化的点?
}

/*估计当前帧位姿;与backend.cpp中的Optimize中的g2o优化相似,第54行,区别在于此处无需优化,只是估计出来,新建一些信息
 *返回计算成功匹配的数量
 *https://blog.csdn.net/wujianing_110117/article/details/116253914
 */
int Frontend::EstimateCurrentPose() {
    // setup g2o(g2o过程)     图优化:单节点+多条一元边
    // 块求解器BlockSolver
    typedef g2o::BlockSolver_6_3 BlockSolverType;                   //pose is 6 dof, landmark is 3 dof(位姿是6维度,地标是3维度)
    // 第1步:创建一个线性求解器LinearSolver
    typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType>
        LinearSolverType;                                           //线性求解器
    
    // 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
    //此处类似与加锁互斥?确定一个求解器并加锁
    auto solver = new g2o::OptimizationAlgorithmLevenberg(          //求解器梯度下降方法采用LM
        g2o::make_unique<BlockSolverType>(
            g2o::make_unique<LinearSolverType>()));
    // 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)构造Levenberg算法,该算法将使用给定的求解器来求解线性化系统。
    g2o::SparseOptimizer optimizer;     //图模型
    optimizer.setAlgorithm(solver);     //设置求解器,这里是三角化?

    // 节点:一个节点(位姿)
    // vertex定义图优化问题中的定点,顶点是当前帧到上一帧的位姿变化
    // 第5步:定义图的顶点和边。并添加到SparseOptimizer中
    VertexPose *vertex_pose = new VertexPose();  // camera vertex_pose(相机在图优化问题中的定点的位姿)
    //设置图中节点的id,确保改变id后图保持一致
    vertex_pose->setId(0);
    //设置顶点的估计也调用updateCache()
    vertex_pose->setEstimate(current_frame_->Pose());
    /*
     * adds a new vertex. The new vertex is then "taken".
     * @return false if a vertex with the same id as v is already in the graph, true otherwise.
     * 添加一个新顶点。新的顶点被“获取”。
     * @返回false,如果与v具有相同id的顶点已经在图中,否则返回true。
     */
    optimizer.addVertex(vertex_pose);

    // K,相机内参数K
    Mat33 K = camera_left_->K();

    // edges 定义图优化问题的边,边是地图点(3D世界坐标)在当前帧的投影位置(像素坐标)
    // 边:每对对应点都是
    int index = 1;
    std::vector<EdgeProjectionPoseOnly *> edges;    //边的容器 EdgeProjectionPoseOnly仅估计位姿的一元边
    std::vector<Feature::Ptr> features;             //特征点的容器
    // 往图中增加边
    for (size_t i = 0; i < current_frame_->features_left_.size(); ++i) {//循环遍历当前帧的左侧图
        auto mp = current_frame_->features_left_[i]->map_point_.lock();//判断地图点相关线程没有上锁
        //没有上锁的时候,建立相关的边
        if (mp) {
            features.push_back(current_frame_->features_left_[i]);
            EdgeProjectionPoseOnly *edge =
                new EdgeProjectionPoseOnly(mp->pos_, K);//建立的是一元边
            edge->setId(index);                 //设置边:每个路标点和其任意一个观测帧的位姿都要建立一条边
            edge->setVertex(0, vertex_pose);    //将超边缘上的第i个顶点设置为提供的指针;————>连接顶点
            edge->setMeasurement(
                toVec2(current_frame_->features_left_[i]->position_.pt));   //由边表示的测量的访问函数,对应的像素点
            //设置边的信息矩阵:setInformation约束的信息矩阵,Identity返回单位矩阵的表达式(不一定是平方)
            edge->setInformation(Eigen::Matrix2d::Identity());              // 信息矩阵:协方差矩阵(之逆)
            edge->setRobustKernel(new g2o::RobustKernelHuber);              //设置边鲁棒核函数
            edges.push_back(edge);                                          //将设置好的边推入容器边中
            optimizer.addEdge(edge);                //在optimizer(图模型)中加入该边,如果失败返回false
            index++;                    //???
        }
    }

    // estimate the Pose the determine the outliers(估计姿态,确定异常值)
    const double chi2_th = 5.991;       //卡方检验
    int cnt_outlier = 0;
    for (int iteration = 0; iteration < 4; ++iteration) {
        vertex_pose->setEstimate(current_frame_->Pose());
        optimizer.initializeOptimization();     //初始化结构以优化整个图,失败返回ifalse
        optimizer.optimize(10);
        cnt_outlier = 0;

        // count the outliers        // 计算异常
        for (size_t i = 0; i < edges.size(); ++i) {
            auto e = edges[i];
            if (features[i]->is_outlier_) {
                e->computeError();
            }
            //阈值:5.991(设置边缘的水平)
            if (e->chi2() > chi2_th) {
                features[i]->is_outlier_ = true;//标记
                e->setLevel(1);
                cnt_outlier++;
            } else {
                features[i]->is_outlier_ = false;
                e->setLevel(0);
            };
            //???==2时,为什么?未相连任何的顶点?
            if (iteration == 2) {
                e->setRobustKernel(nullptr);
            }
        }
    }

    LOG(INFO) << "Outlier/Inlier in pose estimating: " << cnt_outlier << "/"
              << features.size() - cnt_outlier;
    // Set pose and outlier    // 记录位姿及异常的匹配结果
    current_frame_->SetPose(vertex_pose->estimate());

    LOG(INFO) << "Current Pose = \n" << current_frame_->Pose().matrix();

    //遍历后,将所有异常值初始化
    for (auto &feat : features) {
        if (feat->is_outlier_) {
            feat->map_point_.reset();
            feat->is_outlier_ = false;  // maybe we can still use it in future
        }
    }
    return features.size() - cnt_outlier;    //计算成功匹配的数量
}

//跟踪上一帧
int Frontend::TrackLastFrame() {
    //和第398行中的LK光流追踪相似?看着好像相同
    // use LK flow to estimate points in the right image(在右侧图中?)
    std::vector<cv::Point2f> kps_last, kps_current;
    for (auto &kp : last_frame_->features_left_) {
        if (kp->map_point_.lock()) {        //如果关键点上锁
            // use project point(使用项目点)
            auto mp = kp->map_point_.lock();       //复制给一个mp
            // 将世界坐标系中的坐标投影到像素坐标系上
            auto px =
                camera_left_->world2pixel(mp->pos_, current_frame_->Pose());
            //关键帧的上一个容器中推入匹配到的关键点
            kps_last.push_back(kp->position_.pt);
            //当前帧中推入对应的像素坐标系上的坐标
            kps_current.push_back(cv::Point2f(px[0], px[1]));
        } else {            //没有上锁,直接推入对应的点
            kps_last.push_back(kp->position_.pt);
            kps_current.push_back(kp->position_.pt);
        }
    }

    std::vector<uchar> status;  // 设置一个状态的容器
    Mat error;                  //设置一个error矩阵
    //opencv自带的光流跟踪函数
    /*
    https://blog.csdn.net/weixin_42905141/article/details/93745116
        void cv::calcOpticalFlowPyrLK(cv::InputArray prevImg, 
                                        cv::InputArray nextImg, 
                                        cv::InputArray prevPts, 
                                        cv::InputOutputArray nextPts, 
                                        cv::OutputArray status, 
                                        cv::OutputArray err, 
                                        cv::Size winSize = cv::Size(21, 21), 
                                        int maxLevel = 3, 
                                        cv::TermCriteria criteria = cv::TermCriteria((TermCriteria::COUNT) + (TermCriteria::EPS), 
                                        30, 
                                        (0.01000000000000000021)), 
                                        int flags = 0,
                                        double minEigThreshold = (0.0001000000000000000048))
        Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with pyramids.
        (利用金字塔迭代Lucas-Kanade方法计算稀疏特征集的光流。)金字塔迭代书P156页

        参数:
            prevImg – first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
            nextImg – second input image or pyramid of the same size and the same type as prevImg.
            prevPts – vector of 2D points for which the flow needs to be found; point coordinates must be single-precision floating-point numbers.
            nextPts – output vector of 2D points (with single-precision floating-point coordinates) containing the calculated new positions of input features in the second image; when OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
                    二维点(单精度浮点坐标)的输出向量,包含第二幅图像中计算出的输入特征的新位置;当传递OPTFLOW_USE_INITIAL_FLOW标志时,vector必须具有与输入中相同的大小。
            status – output status vector (of unsigned chars); each element of the vector is set to 1 if the flow for the corresponding features has been found, otherwise, it is set to 0.
                    输出状态向量(无符号字符);如果找到对应特征的流,则将向量的每个元素设为1,否则设为0。
            err – output vector of errors; each element of the vector is set to an error for the corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't found then the error is not defined (use the status parameter to find such cases).
            winSize – size of the search window at each pyramid level.
            maxLevel – 0-based maximal pyramid level number; if set to 0, pyramids are not used (single level), if set to 1, two levels are used, and so on; if pyramids are passed to input then algorithm will use as many levels as pyramids have but no more than maxLevel.
            criteria – parameter, specifying the termination criteria of the iterative search algorithm (after the specified maximum number of iterations criteria.maxCount or when the search window moves by less than criteria.epsilon.
            flags – operation flags: - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is not set, then prevPts is copied to nextPts and is considered the initial estimate. - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see minEigThreshold description); if the flag is not set, then L1 distance between patches around the original and a moved point, divided by number of pixels in a window, is used as a error measure.
            minEigThreshold – the algorithm calculates the minimum eigen value of a 2x2 normal matrix of optical flow equations (this matrix is called a spatial gradient matrix in

        备注:
            - An example using the Lucas-Kanade optical flow algorithm can be found at opencv_source_code/samples/cpp/lkdemo.cpp - (Python) An example using the Lucas-Kanade optical flow algorithm can be found at opencv_source_code/samples/python/lk_track.py - (Python) An example using the Lucas-Kanade tracker for homography matching can be found at opencv_source_code/samples/python/lk_homography.py
    */
    cv::calcOpticalFlowPyrLK(
        last_frame_->left_img_, current_frame_->left_img_, kps_last,
        kps_current, status, error, cv::Size(11, 11), 3,
        cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30,
                         0.01),
        cv::OPTFLOW_USE_INITIAL_FLOW);
    //统计匹配上的特征点个数,并存储
    int num_good_pts = 0;

    for (size_t i = 0; i < status.size(); ++i) {
        //如果匹配到对应的流则个数加一;并指针继续向后指
        if (status[i]) {
            cv::KeyPoint kp(kps_current[i], 7);
            Feature::Ptr feature(new Feature(current_frame_, kp));
            feature->map_point_ = last_frame_->features_left_[i]->map_point_;
            current_frame_->features_left_.push_back(feature);
            num_good_pts++;
        }
    }

    LOG(INFO) << "Find " << num_good_pts << " in the last image.";
    //返回成功匹配的点对数量
    return num_good_pts;
}

/*
*初始化(立体初始化??)
*成功@return true
*/
bool Frontend::StereoInit() {
    //提取左目的GFTT特征点(数量)
    int num_features_left = DetectFeatures();

    //使用LK光流匹配左右目中的GFTT特征点(LK光流跟踪后结果)
    int num_coor_features = FindFeaturesInRight();

    //如果匹配到的特征点数量小于num_features_init_,默认100个,就返回false
    if (num_coor_features < num_features_init_) {
        return false;
    }

    //初始化地图
    bool build_map_success = BuildInitMap();

    //如果地图初始化成功就改前端状态为TRACKING_GOOD,并把当前帧和地图点传到viewer_线程里
    if (build_map_success) {
        status_ = FrontendStatus::TRACKING_GOOD;
        //地图在可视化端的操作,添加当前帧并更新整个地图
        if (viewer_) {
            viewer_->AddCurrentFrame(current_frame_);
            viewer_->UpdateMap();
        }
        return true;
    }
    return false;
}

/**
*提取关键点(左视角图像)
*return 关键点数量
**/
int Frontend::DetectFeatures() {
    //为了GETT提取,给均匀化???
    //opencv中mask的作用就是创建感兴趣区域,即待处理的区域。
    /*
         通常,mask大小创建分为两步,先创建与原图一致,类型为CV_8UC1或者CV_8UC3的全零图(即黑色图)。如mask = Mat::zeros(image.size(),CV_8UC1); 
        然后用rect类或者fillPoly()函数将原图中待处理的区域(感兴趣区域)置为1。
        https://blog.csdn.net/yuandm819/article/details/78085550
    */
   //Mat(const cv::dnn::dnn4_v20191202::MatShape &_sz, int _type, const cv::Scalar &_s)最后设置为255,则为全白??
    cv::Mat mask(current_frame_->left_img_.size(), CV_8UC1, 255);
    //循环遍历现在帧上的左侧图像特征,并        //绘制边框
    for (auto &feat : current_frame_->features_left_) {
        /*
            void cv::rectangle(cv::InputOutputArray img, cv::Point pt1, cv::Point pt2, 
                                const cv::Scalar &color, int thickness = 1, int lineType = 8, int shift = 0)
            绘制一个简单的、厚的或向上填充的矩形。函数cv::rectangle绘制一个矩形轮廓或填充矩形,其两个相对的角分别为pt1和pt2。
            position_.pt————————>关键点坐标
            inline cv::Point2f::Point_(float _x, float _y)------>关键点上下左右10距离的矩形,color为0,就是黑色填充满
        */
        cv::rectangle(mask, feat->position_.pt - cv::Point2f(10, 10),
                      feat->position_.pt + cv::Point2f(10, 10), 0, CV_FILLED);
    }

    std::vector<cv::KeyPoint> keypoints;//建立一个关键点的vector
    /*
        virtual void cv::Feature2D::detect(cv::InputArray image, std::vector<cv::KeyPoint> &keypoints, cv::InputArray mask = noArray())
        重载:
            检测图像(第一种变体)或图像集(第二种变体)中的关键点。
        参数:
            image – 图像.
            keypoints – The detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .
                        检测到的关键点。在该方法的第二种变体中,keypoints[i]是在图像[i]中检测到的一组关键点。
            mask – Mask specifying where to look for keypoints (optional). It must be a 8-bit integer matrix with non-zero values in the region of interest.
                        指定在何处查找关键点的掩码(可选)。它必须是一个8位整数矩阵,在感兴趣的区域中具有非零值。
        GFTT角点
    */
    gftt_->detect(current_frame_->left_img_, keypoints, mask);
    //关联current_frame_和kp,同时统计这两次检测到的特征点数量
    int cnt_detected = 0;
    for (auto &kp : keypoints) {
        //作为一个关键点Feature类型存储;push是推进、pop是跳出
        current_frame_->features_left_.push_back(
            Feature::Ptr(new Feature(current_frame_, kp)));//持有features的frame和关keypoint
        cnt_detected++;//检测计数加一
    }

    LOG(INFO) << "Detect " << cnt_detected << " new features";
    return cnt_detected;//返回的是检测出的数量
}

/**
*当前帧的右侧图像中查找相应的特征(右视角)
*return 关键点数量
**/
int Frontend::FindFeaturesInRight() {

    //赋初值
    // 用LK光流估计右侧图像中的点
    std::vector<cv::Point2f> kps_left, kps_right;
    //循环遍历当前帧的左侧图像关键点
    for (auto &kp : current_frame_->features_left_) {
        //存入这个关键点
        kps_left.push_back(kp->position_.pt);
        //检查是否上锁,返回的是null或者是不空,代表着未上锁还是已上锁
        auto mp = kp->map_point_.lock();
        
        //why???
        if (mp) {//如果上锁
            // use projected points as initial guess(使用投影点作为初始估计值)
            auto px =
                camera_right_->world2pixel(mp->pos_, current_frame_->Pose());
            //存入右侧图像的关键点
            kps_right.push_back(cv::Point2f(px[0], px[1]));
        } else {//如果没上锁
            // use same pixel in left iamge(使用统一坐标)
            kps_right.push_back(kp->position_.pt);
        }
    }

    // use LK flow to estimate points in the right image(使用LK流来估计右侧图像中的点)
    std::vector<uchar> status;
    Mat error;
    //opencv自带的光流跟踪函数
    /*
    https://blog.csdn.net/weixin_42905141/article/details/93745116
        void cv::calcOpticalFlowPyrLK(cv::InputArray prevImg, 
                                        cv::InputArray nextImg, 
                                        cv::InputArray prevPts, 
                                        cv::InputOutputArray nextPts, 
                                        cv::OutputArray status, 
                                        cv::OutputArray err, 
                                        cv::Size winSize = cv::Size(21, 21), 
                                        int maxLevel = 3, 
                                        cv::TermCriteria criteria = cv::TermCriteria((TermCriteria::COUNT) + (TermCriteria::EPS), 
                                        30, 
                                        (0.01000000000000000021)), 
                                        int flags = 0,
                                        double minEigThreshold = (0.0001000000000000000048))
        Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with pyramids.
        (利用金字塔迭代Lucas-Kanade方法计算稀疏特征集的光流。)金字塔迭代书P156页

        参数:
            prevImg – first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
            nextImg – second input image or pyramid of the same size and the same type as prevImg.
            prevPts – vector of 2D points for which the flow needs to be found; point coordinates must be single-precision floating-point numbers.
            nextPts – output vector of 2D points (with single-precision floating-point coordinates) containing the calculated new positions of input features in the second image; when OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
                    二维点(单精度浮点坐标)的输出向量,包含第二幅图像中计算出的输入特征的新位置;当传递OPTFLOW_USE_INITIAL_FLOW标志时,vector必须具有与输入中相同的大小。
            status – output status vector (of unsigned chars); each element of the vector is set to 1 if the flow for the corresponding features has been found, otherwise, it is set to 0.
                    输出状态向量(无符号字符);如果找到对应特征的流,则将向量的每个元素设为1,否则设为0。
            err – output vector of errors; each element of the vector is set to an error for the corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't found then the error is not defined (use the status parameter to find such cases).
            winSize – size of the search window at each pyramid level.
            maxLevel – 0-based maximal pyramid level number; if set to 0, pyramids are not used (single level), if set to 1, two levels are used, and so on; if pyramids are passed to input then algorithm will use as many levels as pyramids have but no more than maxLevel.
            criteria – parameter, specifying the termination criteria of the iterative search algorithm (after the specified maximum number of iterations criteria.maxCount or when the search window moves by less than criteria.epsilon.
            flags – operation flags: - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is not set, then prevPts is copied to nextPts and is considered the initial estimate. - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see minEigThreshold description); if the flag is not set, then L1 distance between patches around the original and a moved point, divided by number of pixels in a window, is used as a error measure.
            minEigThreshold – the algorithm calculates the minimum eigen value of a 2x2 normal matrix of optical flow equations (this matrix is called a spatial gradient matrix in

        备注:
            - An example using the Lucas-Kanade optical flow algorithm can be found at opencv_source_code/samples/cpp/lkdemo.cpp - (Python) An example using the Lucas-Kanade optical flow algorithm can be found at opencv_source_code/samples/python/lk_track.py - (Python) An example using the Lucas-Kanade tracker for homography matching can be found at opencv_source_code/samples/python/lk_homography.py
    */
    cv::calcOpticalFlowPyrLK(
        current_frame_->left_img_, current_frame_->right_img_, kps_left,
        kps_right, status, error, cv::Size(11, 11), 3,
        cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30,
                         0.01),
        cv::OPTFLOW_USE_INITIAL_FLOW);//最后一个参数flag,使用初始估计,存储在nextPts中;如果未设置标志,则将prevPts复制到nextPts并将其视为初始估计。

    //统计匹配上的特征点个数,并存储
    int num_good_pts = 0;
    for (size_t i = 0; i < status.size(); ++i) {
        if (status[i]) {
            //匹配
            cv::KeyPoint kp(kps_right[i], 7);
            Feature::Ptr feat(new Feature(current_frame_, kp));
            feat->is_on_left_image_ = false;//?????
            current_frame_->features_right_.push_back(feat);
            num_good_pts++;
        } else {
            current_frame_->features_right_.push_back(nullptr);
        }
    }
    //输出操作日志
    LOG(INFO) << "Find " << num_good_pts << " in the right image.";
    //返回成功匹配的点对数量
    return num_good_pts;
}

/**
* 使用单个图像构建初始地图
* @return true if succeed
*/
bool Frontend::BuildInitMap() {
    std::vector<SE3> poses{camera_left_->pose(), camera_right_->pose()};        //设置左右两个相机的位置
    size_t cnt_init_landmarks = 0;                                              //设置地图标志初始值
    for (size_t i = 0; i < current_frame_->features_left_.size(); ++i) {        //循环左侧图像特征点
        if (current_frame_->features_right_[i] == nullptr) continue;            //判断右侧图像是否有对应特征点,有则继续向下执行,没有就continue
        // create map point from triangulation(尝试对每一对匹配点进行三角化)(利用三角测量创建路标点)
        std::vector<Vec3> points{
            camera_left_->pixel2camera(
                Vec2(current_frame_->features_left_[i]->position_.pt.x,
                     current_frame_->features_left_[i]->position_.pt.y)),
            camera_right_->pixel2camera(
                Vec2(current_frame_->features_right_[i]->position_.pt.x,
                     current_frame_->features_right_[i]->position_.pt.y))};
        Vec3 pworld = Vec3::Zero();//新建一个三维0矩阵

        //三角化
        /*
            inline bool myslam::triangulation(const std::vector<SE3> &poses, std::vector<Vec3> points, Vec3 &pt_world)
            linear triangulation with SVD 线性三角测量
            参数:
                poses – poses,
                points – points in normalized plane
                pt_world – triangulated point in the world
            返回:
                true if success
        */
        if (triangulation(poses, points, pworld) && pworld[2] > 0) {
            //创建地图存储数据
            //创建一个新地图,用于信息更新
            auto new_map_point = MapPoint::CreateNewMappoint();
            new_map_point->SetPos(pworld);
            //将观测到的特征点加入新地图
            new_map_point->AddObservation(current_frame_->features_left_[i]);
            new_map_point->AddObservation(current_frame_->features_right_[i]);
            //当前帧的地图点指向新的地图点————————>更新当前帧上的地图点
            current_frame_->features_left_[i]->map_point_ = new_map_point;
            current_frame_->features_right_[i]->map_point_ = new_map_point;
            //初始化地图点makr+1
            cnt_init_landmarks++;
            //在地图中插入当前新的更新点
            map_->InsertMapPoint(new_map_point);
        }
    }
    current_frame_->SetKeyFrame();          //把初始化的这一帧设置为关键帧
    map_->InsertKeyFrame(current_frame_);   //在地图中插入关键帧
    backend_->UpdateMap();                  //后端更新地图(在后端更新)

    //输出操作日志
    LOG(INFO) << "Initial map created with " << cnt_init_landmarks
              << " map points";

    //单个图像构建初始地图成功
    return true;
}

//跟踪失败:重置
bool Frontend::Reset() {
    LOG(INFO) << "Reset is not implemented. ";
    return true;
}

}  // namespace myslam

6. backend.cpp后端文件(重要文件2)

backend.cpp

//
// Created by gaoxiang on 19-5-2.
//

#include "myslam/backend.h"
#include "myslam/algorithm.h"
#include "myslam/feature.h"
#include "myslam/g2o_types.h"
#include "myslam/map.h"
#include "myslam/mappoint.h"

namespace myslam {

Backend::Backend() {
    /*
        在后端初始化中,主要是新开一个线程backend_thread_,然后把这个线程中运行的函数设置为Backend::BackendLoopI()函数。线程运行状态 backend_running_ 设置为true。
        Map类的构造函数是空的哈,没有在构造函数里面设置任何东西。
    */
    backend_running_.store(true);//线程为运行状态,.store()用另一个非原子值替换当前原子化的值 对象类型必须和原子对象声明时一致
    //个人理解为:此线程是将后端回环与this绑定,新开线程进行回环检测;定义新开的线程复制品
    //使用std::bind可以将可调用对象和参数一起绑定,绑定后的结果使用std::function进行保存,并延迟调用到任何我们需要的时候。
    backend_thread_ = std::thread(std::bind(&Backend::BackendLoop, this));

}

void Backend::UpdateMap() {
    std::unique_lock<std::mutex> lock(data_mutex_);
    map_update_.notify_one();
}

void Backend::Stop() {
    backend_running_.store(false);
    map_update_.notify_one();
    backend_thread_.join();
}

//后端回环检测
void Backend::BackendLoop() {
    while (backend_running_.load()) {
        //lock必须在wait()前调用,可以用来守护访问stop_waiting()。wait(lock)返回后会重新获取该lock。
        std::unique_lock<std::mutex> lock(data_mutex_);
        map_update_.wait(lock);

        /// 后端仅优化激活的Frames和Landmarks;Keyframes的缩写
        Map::KeyframesType active_kfs = map_->GetActiveKeyFrames();
        Map::LandmarksType active_landmarks = map_->GetActiveMapPoints();
        //优化关键帧和路标?
        Optimize(active_kfs, active_landmarks);
    }
}

//后端优化,使用g2o库;使用BA优化
//地图和地图的交互:前端调用InsertKeyframe和InsertMapPoint插入新帧和地图点,后端维护地图的结构,判定outlier/剔除等等
void Backend::Optimize(Map::KeyframesType &keyframes,
                       Map::LandmarksType &landmarks) {
    // setup g2o;图优化、非线性;下面操作是构建图优化,先设定g2o
    //块求解器BlockSolver
    typedef g2o::BlockSolver_6_3 BlockSolverType;   // 每个误差项优化变量维度为6,误差值维度为3
    // 第1步:创建一个线性求解器LinearSolver
    typedef g2o::LinearSolverCSparse<BlockSolverType::PoseMatrixType>
        LinearSolverType;
    
    // 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
    //此处类似与加锁互斥
    auto solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique<BlockSolverType>(
            g2o::make_unique<LinearSolverType>()));
    // 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)构造Levenberg算法,该算法将使用给定的求解器来求解线性化系统。
    g2o::SparseOptimizer optimizer;//图模型
    optimizer.setAlgorithm(solver);//设置求解器

    // pose 顶点,使用Keyframe id;vertex and edges used in g2o ba位姿顶点
    std::map<unsigned long, VertexPose *> vertices;
    unsigned long max_kf_id = 0;

    // 共有7个关键帧------>map.h中最后设置激活关键帧的总数量
    for (auto &keyframe : keyframes) {
        auto kf = keyframe.second;//关键帧的复制的第二个值?keyframe第二个类型的副本
        //往图中增加顶点
        VertexPose *vertex_pose = new VertexPose();  // camera vertex_pose(顶点位姿???);
        //设置图中节点的id,确保改变id后图保持一致;virtual void setId(int id) {_id = id;}
        vertex_pose->setId(kf->keyframe_id_);
        //设置顶点的估计也调用updateCache();void setEstimate(const EstimateType& et) { _estimate = et; updateCache();}
        vertex_pose->setEstimate(kf->Pose());

        //bool addVertex(OptimizableGraph::Vertex* v) { return addVertex(v, 0); };
        /*
            添加一个新顶点。新的顶点被“获取”。
            * @返回false,如果与v具有相同id的顶点已经在图中,否则返回true。
        */
        optimizer.addVertex(vertex_pose);
        if (kf->keyframe_id_ > max_kf_id) {
            max_kf_id = kf->keyframe_id_;
        }

        //插入关键帧id和顶点位姿
        vertices.insert({kf->keyframe_id_, vertex_pose});
    }

    // 路标顶点,使用路标id索引
    std::map<unsigned long, VertexXYZ *> vertices_landmarks;

    // K 和左右外参
    Mat33 K = cam_left_->K();
    SE3 left_ext = cam_left_->pose();
    SE3 right_ext = cam_right_->pose();

    // edges
    int index = 1;
    double chi2_th = 5.991;  // robust kernel ( 强大的内核?) 阈值
    std::map<EdgeProjection *, Feature::Ptr> edges_and_features;

    //遍历每一个路标点
    for (auto &landmark : landmarks) {
        //去除异常点,mappoint.h文件中设is_outlier_为false。故如果符合条件继续向下执行,也就是开始时默认没有离群值
        if (landmark.second->is_outlier_) continue;
        unsigned long landmark_id = landmark.second->id_;//复制的frame的id给到便利到的路标点??
        auto observations = landmark.second->GetObs();//获取到的观测值
        //遍历每个路标点的观测帧
        for (auto &obs : observations) {
            //先判断所要操作的观测帧是否在加锁状态
            if (obs.lock() == nullptr) continue;
            auto feat = obs.lock();//获取现在obs的状态,加锁or未加锁
            //判断是都是离群值和加锁
            if (feat->is_outlier_ || feat->frame_.lock() == nullptr) continue;

            auto frame = feat->frame_.lock();
            EdgeProjection *edge = nullptr;
            //构造带有地图和位姿的二元边;构造边,判断标识是否在左图存在
            if (feat->is_on_left_image_) {
                edge = new EdgeProjection(K, left_ext);
            } else {
                edge = new EdgeProjection(K, right_ext);
            }

            // 如果landmark还没有被加入优化,则新加一个顶点;本文件77行类似
            if (vertices_landmarks.find(landmark_id) ==
                vertices_landmarks.end()) {
                VertexXYZ *v = new VertexXYZ;
                v->setEstimate(landmark.second->Pos());
                v->setId(landmark_id + max_kf_id + 1);
                v->setMarginalized(true);//!true,在优化过程中,这个节点应该被边缘化
                vertices_landmarks.insert({landmark_id, v});
                optimizer.addVertex(v);
            }

            //设置边:每个路标点和其任意一个观测帧的位姿都要建立一条边
            edge->setId(index);
            //.at返回的是.second的对应副本
            //设置第一个顶点,注意该顶点类型与模板参数第一个顶点类型对应
            edge->setVertex(0, vertices.at(frame->keyframe_id_));    // pose// 设置连接的顶点
            //设置第二个顶点
            edge->setVertex(1, vertices_landmarks.at(landmark_id));  // landmark
            //设置观测值,类型与模板参数对应
            edge->setMeasurement(toVec2(feat->position_.pt));// 观测数值
            // 信息矩阵:协方差矩阵(之逆)
            edge->setInformation(Mat22::Identity());
            //设置鲁棒核函数(下数3行)
            auto rk = new g2o::RobustKernelHuber();
            rk->setDelta(chi2_th);
            edge->setRobustKernel(rk);

            //相当于是在图表信息中加入边和特征点?
            edges_and_features.insert({edge, feat});
            //优化边
            optimizer.addEdge(edge);

            index++;
        }
    }

    // 第6步:设置优化参数,开始执行优化
    // do optimization and eliminate the outliers(优化后去除异常数据)
    optimizer.initializeOptimization();
    optimizer.optimize(10);//迭代10次

    //标志数量,标志离群和非李群值的数量,用来判断阈值?
    int cnt_outlier = 0, cnt_inlier = 0;
    int iteration = 0;
    while (iteration < 5) {
        cnt_outlier = 0;
        cnt_inlier = 0;
        // determine if we want to adjust the outlier threshold
        // 根据阈值判断异常值
        for (auto &ef : edges_and_features) {
            //chi2()函数返回的是return _error.dot(information()*_error)
            if (ef.first->chi2() > chi2_th) {
                cnt_outlier++;
            } else {
                cnt_inlier++;
            }
        }
        //计算正常点的比例
        double inlier_ratio = cnt_inlier / double(cnt_inlier + cnt_outlier);
        //调整筛选阈值,直到合格
        if (inlier_ratio > 0.5) {
            break;
        } else {
            chi2_th *= 2;
            iteration++;
        }
    }
    //记录结果是否异常
    for (auto &ef : edges_and_features) {
        if (ef.first->chi2() > chi2_th) {//如果是超过阈值,那么将其设置为离群值
            ef.second->is_outlier_ = true;
            // remove the observation
            ef.second->map_point_.lock()->RemoveObservation(ef.second);
        } else {//如果是没有阈值,那么将离群值设置为false
            ef.second->is_outlier_ = false;
        }
    }

    //日志输出
    LOG(INFO) << "Outlier/Inlier in optimization: " << cnt_outlier << "/"
              << cnt_inlier;

    // Set pose and lanrmark position(存储相机位姿及路标点的位置)
    //此处将first指向second的,也就是正常执行后,对整体进行了一个更新替换
    for (auto &v : vertices) {
        keyframes.at(v.first)->SetPose(v.second->estimate());
    }
    for (auto &v : vertices_landmarks) {
        landmarks.at(v.first)->SetPos(v.second->estimate());
    }
}

}  // namespace myslam

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/667597.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【人工智能概论】 Python标准库——typing(类型标注)、 assert断言、 @property装饰器、setter装饰器

【人工智能概论】 Python标准库——typing&#xff08;类型标注&#xff09;、 assert断言、 property装饰器、setter装饰器 文章目录 【人工智能概论】 Python标准库——typing&#xff08;类型标注&#xff09;、 assert断言、 property装饰器、setter装饰器一. typing&#…

向量数据库的行业标准逐渐清晰!Vector DB Bench 正式开源!

大模型带火了向量数据库赛道&#xff0c;也让各式各样的向量数据库进入开发者视野。 对于开发者而言&#xff0c;如何选择一个适合自己的向量数据库至关重要。不过&#xff0c;向量数据库的选型并不简单&#xff0c;开发者不仅需要对市面上各种开源和闭源的数据库进行全面的性能…

我心中世界上最好的语言是PHP,别不信【偷笑】

文章目录 一、前言1.1 最适合的语言2.2 流行的语言2.3 Java和PHP2.4 PHP的性能2.5 关于PHP2.6 作文思路概览 二、PHP的优势2.1 跨平台2.2 开发运行环境搭建方便2.3 强大的包管理工具2.4 拥有优秀的代码调试工具xdebug2.5 上手快&#xff0c;学习成本低2.6 丰富的企业级框架2.7 …

集电极开路是什么?集电极开路电路工作原理讲述

​集电极开路是指集电极电路中出现了断路的情况&#xff0c;导致电路无法正常工作。在集电极开路的情况下&#xff0c;电路中的电流无法通过集电极流过&#xff0c;导致电路无法正常放大信号或者控制其他器件的工作。 集电极开路的原因有很多&#xff0c;可能是器件本身的故障…

端午节:传统文化与现代科技的交融

端午节&#xff0c;又称为龙舟节、重五节&#xff0c;是中国传统节日之一。每年农历五月初五&#xff0c;人们会吃粽子、赛龙舟、挂艾草等&#xff0c;以纪念屈原和抵御瘟疫的传说。但是&#xff0c;随着科技的发展&#xff0c;端午节的庆祝方式也在不断地变化和创新。 一、传统…

Selenium 相对定位

目录 前言&#xff1a; 相对定位 工作原理 可用的相对定位 Above Below Left of Right of Near 链式相对定位 相对于WebElement的相对定位 实例演示 前言&#xff1a; Selenium传统定位基本能解决80%的定位需求&#xff0c;但是还是有一些复杂场景传统定位定不到的…

C语言:实现有序序列判断

题目&#xff1a; 输入一个整数序列&#xff0c;判断是否是有序序列&#xff0c;有序&#xff0c;指序列中的整数从小到大排序或者从大到小排序(相同元素也视为有序)。 输入描述&#xff1a; 第一行输入一个整数N (3≤N≤50) 。 第二行输入N个整数&#xff0c;用空格分隔N个整数…

面试滑铁卢,被HR坑惨了......

阎王易见&#xff0c;小鬼难缠。我一直相信这个世界上好人居多&#xff0c;但是也没想到自己也会在阴沟里翻船。我感觉自己被字节跳动的HR坑了。 在这里&#xff0c;我只想告诫大家&#xff0c;offer一定要拿到自己的手里才是真的&#xff0c;口头offer都是不牢靠的&#xff0…

C++学习之详解命名空间

1.理解命名空间 namespace命名空间正如翻译的那样给命名划分空间&#xff0c;每个函数名或变量等都有自己的使用范围&#xff0c;避免的使用函数名冲突的问题&#xff1b; 打个比方&#xff0c;一个班如果有两人叫做张三&#xff0c;那么其中如何区分这两个人那么就得给他们起…

UI自动化测试 | Jenkins配置优化

前一段时间帮助团队搭建了UI自动化环境&#xff0c;这里将Jenkins环境的一些配置分享给大家。 背景&#xff1a; 团队下半年的目标之一是实现自动化测试&#xff0c;这里要吐槽一下&#xff0c;之前开发的测试平台了&#xff0c;最初的目的是用来做接口自动化测试和性能测试&…

如何判断一家公司值不值得去?

通常职场新手都有这样的困惑&#xff1a;收到某某公司的面试&#xff08;或者offer&#xff09;&#xff0c;我该不该去呢&#xff1f; 为什么有这样的困惑&#xff1f; 大部分原因是因为海投简历导致的。刚出来工作时&#xff0c;我也海投过简历&#xff0c;不管公司好不好&a…

Java使用jna调用c开发的动态库dll文件

文章目录 前言1.c开发动态库dll1.1 新建项目dllDemo1.2 选择C library 在选择shared1.3 项目的目录结构1.4 定义动态库函数1.5 导出动态库 2.java中使用jna调用dll2.1 需要引入jna的依赖2.2 加载动态库dll2.3 测试程序2.3.1 测试代码&#xff1a;2.3.2 测试结果输出 前言 在日…

maven的依赖范围scope使用

测试依赖的范围 #1、依赖范围 标签的位置&#xff1a;dependencies/dependency/scope 标签的可选值&#xff1a;compile/test/provided/system/runtime/import #①compile 和 test 对比 main目录&#xff08;空间&#xff09;test目录&#xff08;空间&#xff09;开发过程…

linux重新安装Yapi

需要保留原来Yapi对应的数据&#xff0c;这样就不需要安装mongo。 1. 安装Yapi npm install -g yapi-cli —registry https://registry.npm.taobao.org yapi server2.平台部署配置 安装成功后&#xff0c;默认端口是9000&#xff0c;开发服务器9000端口&#xff0c;需要服务…

崩盘预警币圈项目:Fintoch(分投趣)为何模式能做千亿资金?

崩盘预警币圈项目&#xff1a;Fintoch&#xff08;分投趣&#xff09;为何模式能做千亿资金&#xff1f; 大家好&#xff0c;小编是微三云的胡佳东&#xff0c;一家软件开发公司的负责人 Fintoch&#xff08;分投趣&#xff09;为何模式崩盘前能够吸引如此巨额资金&#xff1f…

供应链 | 基于图神经网络和深度强化学习的柔性车间调度方法

编者按 本次解读的文章发表于IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS&#xff0c;原文摘要总结如下&#xff1a;本文考虑了众所周知的灵活作业车间调度问题&#xff0c;并通过提出一种新颖的深度强化学习&#xff08;DRL&#xff09;方法来端到端地学习高质量的优先级调度…

SpringBoot实现过滤器Filter的三种方式

# 实现Filter接口方式① 使用Filter接口方式② 使用Component注解方式③ Java Config 配置类 # 实现Filter接口 过滤器 Filter 由 Servlet 提供&#xff0c;基于函数回调实现链式对网络请求与响应的拦截与修改。由于基于 Servlet &#xff0c;其可以对web服务器管理的几乎所有…

重复消费和堆积

接受消息会重复这一现状&#xff0c;然后通过一些方法来消除重复消息对业务的影响 利用幂等性解决重复消息问题 幂等&#xff08;其任意多次执行所产生的影响均与一次执行的影响相同。&#xff09; 一个幂等的方法&#xff0c;使用同样的参数&#xff0c;对它进行多次调用和一…

flutter七牛云上传sdk插件qiniu_flutter_sdk使用

flutter七牛云上传sdk插件qiniu_flutter_sdk使用 最近在拆分代码&#xff0c;将上传组件设置成插件&#xff0c;下面记录下实现过程。 一、创建flutter_plugin上传插件 这里Android Studio使用创建plugin 填写一下信息 Project nameProject locationDescriptionProject typ…

单片机入门所需的基础数电和模电知识

要学习单片机并入门相关领域&#xff0c;推荐掌握以下数电和模电的基础知识&#xff1a; 数电知识&#xff1a; 布尔代数和逻辑门&#xff1a;了解布尔代数的基本概念和逻辑门的工作原理&#xff0c;包括与门、或门、非门、与非门、或非门、异或门等。 时序逻辑和时钟信号&a…