1 概述
手续的关于测试的方法论,都是建立在之前的文章里面提到的观点:
- 功能测试不建议做自动化
- 接口测试性价比最高
- 接口测试可以做自动化
后面所谈到的 测试自动化 也将围绕着 接口自动化 来介绍。
如果你想学习自动化测试,我这边给你推荐一套视频,这个视频可以说是B站播放全网第一的自动化测试教程,同时在线人数到达1000人,并且还有笔记可以领取及各路大神技术交流:798478386
B站讲的最详细的Python接口自动化测试实战教程全集(实战最新版)_哔哩哔哩_bilibiliB站讲的最详细的Python接口自动化测试实战教程全集(实战最新版)共计200条视频,包括:1、接口自动化之为什么要做接口自动化、2、接口自动化之request全局观、3、接口自动化之接口实战等,UP主更多精彩视频,请关注UP账号。https://www.bilibili.com/video/BV17p4y1B77x/?spm_id_from=333.337.search-card.all.click
本系列选择的测试语言是 python 脚本语言。由于其官方文档已经对原理有了比较清楚的解释,本文就不做一些多余的翻译工作了。偏向于实战部分,而且为了偏向实战,也会结合 IDE 工具和项目组织来进行讲解。
理由如下:
- 脚本语言,开发和迭代的效率极高
- 第三方的扩展库极多,有很我现成的工具可以使用
在正式进入到 自动化测试 的领域之前,先要建立这样的价值观。在Google内部工程师发布的软件测试的出版物里面提到:
“软件的自动化测试是有成本的,而且成本不低,基本上相当于在原有的 功能开发工程 的基础上再建立一个平行的 测试开发工程 ”。
也就是说,如果你对自动化测试有你的期望值,那么就肯定是要付出相应的代价和精力的。好的东西也是需要优秀的人花大量的时间去完成的。
2 PyUnit测试框架
使用 python 作为自动化编程语言,那么就自然的使用 pyunit 作为自动化测试框架了。
如下部分的内容主要来自于 pyunit 的官方文档,本文仅仅做了一些翻译和结构上的简单调整。这部分属于测试框架的基本原理和概念部分,在进行代码编写前,有必要进行了解。
python的单元测试框架 PyUnit,可以认为是 Java 语言下的单元测试框架 JUnit 的 Python 语言实现版本,甚至其作者之一 Kent Beck 就是 JUnit 的作者。
unittest要达到如下目标:
- 支持自动化测试
- 让所有的测试脚本共享 开启(setup) 和 关闭(shutdown) 的代码
- 可以通过集合(collections)的方式来组织测试用例脚本
- 将所有的测试脚本从测试报告框架中独立出来
为了达到以上目标,unittest支持如下几个重要概念:
-
测试装置(test fixture)
为一个或者多个测试用例做一些准备工作,例如:连接一个数据库,创建一个目录,或者开启一个进程
-
测试用例(test case)
测试用例是测试行为的最小单元,通过对一些输入输出值的对比来进行测试检查
-
测试套件(test suite)
将 测试用例 或者 测试用例集合 聚合组织起来的集合。可以批量执行一个测试套件内所有的测试用例
-
测试执行器(test runner)
组织安排测试脚本执行活动的组件。测试执行器通过一些图形界面,文本界面或者返回一些特殊的值来展示测试脚本的测试结果。主要用于生成测试报告
3 基本示例
如下示例也来自于官方文档 basic_demo.py:
# coding:utf-8
"""
基本的自动化测试脚本 basic_demo.py
"""
__author__ = 'zheng'
import unittest
class TestStringMethods(unittest.TestCase):
def setUp(self):
print 'init by setUp...'
def tearDown(self):
print 'end by tearDown...'
def test_upper(self):
self.assertEqual('foo'.upper(), 'FOO')
def test_isupper(self):
self.assertTrue('FOO'.isupper())
self.assertFalse('Foo'.isupper())
self.assertTrue('Foo'.isupper())
def test_split(self):
s = 'hello world'
self.assertEqual(s.split(), ['hello', 'world'])
# check that s.split fails when the separator is not a string
with self.assertRaises(TypeError):
s.split(2)
if __name__ == '__main__':
unittest.main()
虽然官方文档里面介绍了几种组织测试用例脚本的方式:
- 独立测试函数
- 单用例测试类
- 多用例测试类
不同的编写形态,会有不同的组织方式,具体的可以看官方文档。本文作者研究过官方文档后,最喜欢第三种方式 多用例测试类,也就是上面基本示例的方式,这种方式具有如下特点:
- 测试类 继承于 unittest.TestCase
- 一个测试类可以管理多个 测试脚本函数
- 测试脚本函数名称需要以 test_ 开头
- 一个测试类里面的所有的测试函数共享 setUp和tearDown函数
在控制台中运行此程序:
➜ src git:(master) ✗ python basic_demo.py
init by setUp...
Fend by tearDown...
init by setUp...
end by tearDown...
.init by setUp...
end by tearDown...
.
======================================================================
FAIL: test_isupper (__main__.TestStringMethods)
----------------------------------------------------------------------
Traceback (most recent call last):
File "basic_demo.py", line 24, in test_isupper
self.assertTrue('Foo'.isupper())
AssertionError: False is not true
----------------------------------------------------------------------
Ran 3 tests in 0.001s
FAILED (failures=1)
➜ src git:(master) ✗
前面的基本例子的 main 函数采用的最简单的方式,直接运行所有的测试用例,并生成默认的文本报告。其实只需要对调用函数做一些简单的修改,可以将这些测试用例进行合理组织,并获取其实有用的数据信息,以便和信息系统进行集成,形成较好的扩展。
if __name__ == '__main__':
# unittest.main()
# 装载测试用例
test_cases = unittest.TestLoader().loadTestsFromTestCase(TestStringMethods)
# 使用测试套件并打包测试用例
test_suit = unittest.TestSuite()
test_suit.addTests(test_cases)
# 运行测试套件,并返回测试结果
test_result = unittest.TextTestRunner(verbosity=2).run(test_suit)
#生成测试报告
print("testsRun:%s" % test_result.testsRun)
print("failures:%s" % len(test_result.failures))
print("errors:%s" % len(test_result.errors))
print("skipped:%s" % len(test_result.skipped))
运行后生成的输出为:
➜ src git:(master) ✗ python basic_demo.py
test_isupper (__main__.TestStringMethods) ... init by setUp...
FAIL
end by tearDown...
test_split (__main__.TestStringMethods) ... init by setUp...
end by tearDown...
ok
test_upper (__main__.TestStringMethods) ... init by setUp...
end by tearDown...
ok
======================================================================
FAIL: test_isupper (__main__.TestStringMethods)
----------------------------------------------------------------------
Traceback (most recent call last):
File "basic_demo.py", line 23, in test_isupper
self.assertTrue('Foo'.isupper())
AssertionError: False is not true
----------------------------------------------------------------------
Ran 3 tests in 0.001s
FAILED (failures=1)
testsRun:3
failures:1
errors:0
skipped:0
显然上面的输入结果已经将测试的结果进行了统计,这些数据都是一次测试活动中的重要指标,这些数据可以入库,和测试信息管理系统集成,后期生成仪表盘或者统计报表,形成稳定和产品测试线路图,这些都是和开发相关的了,在此不再多叙述了。
结合上面的具体例子,我们也可以找到上一节的理论部分对应的具体实现对象:
-
测试装置(test fixture)
由setUp函数来做初始化工作,由tearDown做销毁工作
-
测试用例(test case)
对应TestCase类,或者更细化的对应里面的测试脚本函数
-
测试套件(test suite)
对应TestSuite类
-
测试执行器(test runner)
对应TextTestRunner类
4 IDE工具
既然需要开发代码的生产力,那么就需要介绍一款IDE工具-- Pycharm。不可否认,它是目前最专注/专业的 Python 语言的 IDE 了。在对Pyunit 也有比较好的支持。
主要支持如下:
-
可视化的编程开发(这是IDE的基本特点)
-
对测试结果进行可视化的展示
-
导出生成HTML的测试报告
-
可视化控制用例执行(这个在开发调试阶段很方便,可以方便控制指定代码单元运行)
- 让一个目录下的所有用命执行
- 让单个文件内所有用例执行
- 让单个文件内的单个用命执行
4.1 运行和调试
Pycharm 对测试脚本提供了灵活的运行和调试支持。
通过pycharm,开发人员可以不用编写main函数,就可以实现如下功能:
- 运行一个文件下所有的测试类
- 运行一个测试类的所有测试脚本
- 运行一个测试类的某个测试脚本
其中 "运行一个测试类的某个测试脚本" 比较有用,适合在开发阶段快速地对单个脚本进行开发和运行调试。
使用方法:
- 将光标移动到测试函数内部
- 按下运行快捷键 ctrl+shift+F10 (Eclipse快捷键方案)
如果要断点调试,则使用Debug模式,即可对单个函数运行和断点调试了。
当然,也可以不必借用IDE,而通过对testSuit操作,也可以实现以上功能,但是IDE却提供了更灵活直接的选择。这只是一些IDE使用技巧,也不多述了。
4.2 结果可视化
对于前面提到的例子,如果选择在IDE中运行此程序,会看到如下效果:
可以看到全部运行通过。如果刻意将其中一个弄成不通过的,则会显示如下的结果: