【C++】的多态

news2024/11/26 2:30:13

目录

  • 1. 多态的概念
  • 2. 多态的定义及实现
    • 虚函数
    • 虚函数的重写
    • 虚函数重写的两个例外:
    • C++11 override 和 final
    • 重载、覆盖(重写)、隐藏(重定义)的对比
  • 3. 抽象类
    • 接口继承和实现继承
  • 4. 多态的原理
    • 虚函数表
  • 5. 单继承和多继承关系中的虚函数表
    • 单继承中的虚函数表
    • 多继承中的虚函数表

前言
需要声明的,本节课件中的代码及解释都是在vs2019下的x86程序中,涉及的指针都是4bytes。如果要其他平台下,部分代码需要改动。比如:如果是x64程序,则需要考虑指针是8bytes问题等等

1. 多态的概念

多态的概念:通俗来说,就是多种形态,具体点就是去完成某个行为,当不同的对象去完成时会产生出不同的状态。
举个栗子:比如买票这个行为,当普通人买票时,是全价买票;学生买票时,是半价买票;军人买票时是优先买票。

2. 多态的定义及实现

虚函数

虚函数:即被virtual修饰的类成员函数称为虚函数

class Person 
{
public:
	virtual void BuyTicket() { cout << "买票-全价" << endl; }
};

多态是在不同继承关系的类对象,去调用同一函数,产生了不同的行为。比如Student继承了PersonPerson对象买票全价,Student对象买票半价。

那么在继承中要构成多态还有两个条件:

  1. 必须通过基类的指针或者引用调用虚函数
  2. 被调用的函数必须是虚函数,且派生类必须对基类的虚函数进行重写
    在这里插入图片描述

虚函数的重写

虚函数的重写(覆盖):派生类中有一个跟基类完全相同的虚函数(即派生类虚函数与基类虚函数的(返回值类型、函数名字、参数列表完全相同),称子类的虚函数重写了基类的虚函数。

class Person 
{
public:
	virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person 
{
public:
	virtual void BuyTicket() { cout << "买票-半价" << endl; }
	/*void BuyTicket() { cout << "买票-半价" << endl; }*/
};

void Func(Person& p)
{
	p.BuyTicket();
}

int main()
{
	Person ps;
	Student st;
	Func(ps);
	Func(st);
	return 0;
}

在这里插入图片描述
注意:
在重写基类虚函数时,派生类的虚函数在不加virtual关键字时,虽然也可以构成重写(因为继承后基类的虚函数被继承下来了在派生类依旧保持虚函数属性),但是该种写法不是很规范,不建议这样使用

虚函数重写的两个例外:

  1. 协变(基类与派生类虚函数返回值类型不同)
    派生类重写基类虚函数时,与基类虚函数返回值类型不同。即基类虚函数返回基类对象的指针或者引用,派生类虚函数返回派生类对象的指针或者引用时 (其他的都不可以),称为协变。
class A {};
class B : public A {};

class Person
{
public:
	virtual A* BuyTicket()
	{ cout << "买票-全价" << endl; return nullptr; }
};
class Student : public Person
{
public:
	virtual B* BuyTicket() 
	{ cout << "买票-半价" << endl; return nullptr; }
};

void Func(Person& p)
{
	p.BuyTicket();
}

int main()
{
	Person ps;
	Student st;
	Func(ps);
	Func(st);
	return 0;
}

在这里插入图片描述
2. 析构函数的重写(基类与派生类析构函数的名字不同)
如果基类的析构函数为虚函数,此时派生类析构函数只要定义,无论是否加virtual关键字,都与基类的析构函数构成重写,虽然基类与派生类析构函数名字不同。虽然函数名不相同,看起来违背了重写的规则,其实不然,这里可以理解为编译器对析构函数的名称做了特殊处理,编译后析构函数的名称统一处理成destructor

class Person {
public:
	virtual ~Person() { cout << "~Person()" << endl; }
};
class Student : public Person {
public:
	virtual ~Student() { cout << "~Student()" << endl; }
};

int main()
{
	Person* p1 = new Person;
	Person* p2 = new Student;
	delete p1;
	delete p2;
	return 0;
}

在这里插入图片描述
只有派生类Student的析构函数重写了Person的析构函数,下面的delete对象调用析构函数,才能构成多态,才能保证p1和p2指向的对象正确的调用析构函数。

构成多态的硬性条件缺一不可
1、虚函数的重写 ,三同(函数名、参数、返回值)

例外(协变):返回值可以不同,必须是父子关系指针或者引用
例外:子类虚函数可以不加virtual

2、父类指针或者引用去调用

练习一下

class A
{
public:
	virtual void func(int val = 1) { std::cout << "A->" << val << std::endl; }
	virtual void test() { func(); }
};

class B : public A
{
public:
	void func(int val = 0) { std::cout << "B->" << val << std::endl; }
};

int main(int argc, char* argv[])
{
	B* p = new B;
	p->test();
	return 0;
}

A: A->0 B : B->1 C : A->1 D : B->0 

在这里插入图片描述

C++11 override 和 final

从上面可以看出,C++对函数重写的要求比较严格,但是有些情况下由于疏忽,可能会导致函数名字母次序写反而无法构成重载,而这种错误在编译期间是不会报出的,只有在程序运行时没有得到预期结果才来debug会得不偿失,因此:C++11提供了overridefinal两个关字,可以帮助用户检测是否重写。

  1. final:修饰虚函数,表示该虚函数不能再被重写

在这里插入图片描述
2. override: 检查派生类虚函数是否重写了基类某个虚函数,如果没有重写编译报错
在这里插入图片描述

重载、覆盖(重写)、隐藏(重定义)的对比

在这里插入图片描述

3. 抽象类

概念
在虚函数的后面写上 =0 ,则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类(也叫接口类),抽象类不能实例化出对象。派生类继承后也不能实例化出对象,只有重写纯虚函数,派生类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承。

class Car
{
public:
	virtual void Drive() = 0;
};

class Benz :public Car
{
public:
	virtual void Drive()
	{
		cout << "Benz-舒适" << endl;
	}
};

class BMW :public Car
{
public:
	virtual void Drive()
	{
		cout << "BMW-操控" << endl;
	}
};

int main()
{
	Car* pBenz = new Benz;
	pBenz->Drive();
	Car* pBMW = new BMW;
	pBMW->Drive();

	return 0;
}

接口继承和实现继承

普通函数的继承是一种实现继承,派生类继承了基类函数,可以使用函数,继承的是函数的实现。虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数。

4. 多态的原理

虚函数表

class Base
{
public:
	virtual void Func1()
	{
		cout << "Func1()" << endl;
	}
private:
	int _b = 1;
};

int main()
{
	Base b;
	cout << sizeof(Base) << endl;
	return 0;
}

通过观察测试我们发现b对象是8bytes,除了_b成员,还多一个__vfptr放在对象的前面(注意有些平台可能会放到对象的最后面,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代表virtual,f代表function)。一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数的地址要被放到虚函数表中,虚函数表也简称虚表,。那么派生类中这个表放了些什么呢?我们接着往下分析
在这里插入图片描述

class Base{
public:
	Base()
		:_b(10)
	{
		++_b;
	}
	virtual void Func1(){
		cout << "Base::Func1()" << endl;
	}
	virtual void Func2() {
		cout << "Base::Func2()" << endl;
	}
	void Func3(){
		cout << "Base::Func3()" << endl;
	}
private:
	int _b = 1;
};
class Derive : public Base{
public:
	virtual void Func1(){
		cout << "Derive::Func1()" << endl;
	}

	virtual void Func4(){
		cout << "Derive::Func4()" << endl;
	}
private:
	int _d = 2;
};
int main(){
	Base b;
	Derive d;
	return 0;
}

通过观察和测试,我们发现了以下几点问题:

  1. 派生类对象d中也有一个虚表指针,d对象由两部分构成,一部分是父类继承下来的成员,虚表指针也就是存在部分的另一部分是自己的成员。
  2. 基类b对象和派生类d对象虚表是不一样的,这里我们发现Func1完成了重写,所以d的虚表中存的是重写的Derive::Func1,所以虚函数的重写也叫作覆盖,覆盖就是指虚表中虚函数的覆盖。重写是语法的叫法,覆盖是原理层的叫法。
  3. 另外Func2继承下来后是虚函数,所以放进了虚表,Func3也继承下来了,但是不是虚函数,所以不会放进虚表。
  4. 虚函数表本质是一个存虚函数指针的指针数组,一般情况这个数组最后面放了一个nullptr。
  5. 总结一下派生类的虚表生成:a.先将基类中的虚表内容拷贝一份到派生类虚表中 b.如果派生类重写了基类中某个虚函数,用派生类自己的虚函数覆盖虚表中基类的虚函数 c.派生类自己新增加的虚函数按其在派生类中的声明次序增加到派生类虚表的最后。
  6. 这里还有一个很容易混淆的问题:虚函数存在哪的?虚表存在哪的? 答:虚函数存在虚表,虚表存在对象中。注意上面的回答的错的。注意虚表存的是虚函数指针,不是虚函数,虚函数和普通函数一样的,都是存在代码段的,只是他的指针又存到了虚表中。另外对象中存的不是虚表,存的是虚表指针。那么虚表存在哪的呢?实际我们去验证一下会发现vs下是存在代码段的,Linux g++下大家自己去验证?

在这里插入图片描述

5. 单继承和多继承关系中的虚函数表

单继承中的虚函数表

typedef void(*VF_PTR)();
class Base 
{
public:
	virtual void func1() { cout << "Base::func1" << endl; }
	virtual void func2() { cout << "Base::func2" << endl; }
private:
	int a;
};

class Derive :public Base 
{
public:
	virtual void func1() { cout << "Derive::func1" << endl; }
	virtual void func3() { cout << "Derive::func3" << endl; }
	virtual void func4() { cout << "Derive::func4" << endl; }
private:
	int b;
};

观察下图中的监视窗口中我们发现看不见func3和func4。这里是编译器的监视窗口故意隐藏了这两个函数,也可以认为是他的一个小bug。那么我们如何查看d的虚表呢?下面我们使用代码打印出虚表中的函数。
在这里插入图片描述

void PrintVFTable(VF_PTR* table)
{
	for(int i = 0; table[i] != nullptr; ++i)
	{
		printf("[%d]:%p->", i, table[i]);
		VF_PTR f = table[i];
		f();
	}
	cout << endl;
}

int main()
{
	Base b;
	Derive d;

	//在32位的机器上代码正确,64位下地址是8字节,将b强转成int*,在解引用b是int类型只访问4个字节
	/*PrintVFTable((VF_PTR*)(*(int*)&b));
	PrintVFTable((VF_PTR*)(*(int*)&d));*/
	//32和64机器都正确
	PrintVFTable((*(VF_PTR**)&b));
	PrintVFTable((*(VF_PTR**)&d));

	return 0;
}

PrintVFTable((VF_PTR*)(*(int*)&b)); PrintVFTable((VF_PTR*)(*(int*)&d));
思路:取出b、d对象的头4bytes,就是虚表的指针,前面我们说了虚函数表本质是一个存虚函数指针的指针数组,这个数组最后面放了一个nullptr

  1. 先取b的地址,强转成一个int*的指针
  2. 再解引用取值,就取到了b对象头4bytes的值,这个值就是指向虚表的指针
  3. 再强转成VFPTR*,因为虚表就是一个存VFPTR类型(虚函数指针类型)的数组。
  4. 虚表指针传递给PrintVTable进行打印虚表
  5. 需要说明的是这个打印虚表的代码经常会崩溃,因为编译器有时对虚表的处理不干净,虚表最后面没有放nullptr,导致越界,这是编译器的问题。我们只需要点目录栏的-生成-清理解决方案,再编译就好了。

在这里插入图片描述

多继承中的虚函数表

typedef void(*VF_PTR)();
class Base1 {
public:
	virtual void func1() { cout << "Base1::func1" << endl; }
	virtual void func2() { cout << "Base1::func2" << endl; }
private:
	int b1;
};
class Base2 {
public:
	virtual void func1() { cout << "Base2::func1" << endl; }
	virtual void func2() { cout << "Base2::func2" << endl; }
private:
	int b2;
};
class Derive : public Base1, public Base2 {
public:
	virtual void func1() { cout << "Derive::func1" << endl; }
	virtual void func3() { cout << "Derive::func3" << endl; }
private:
	int d1;
};

void PrintVFTable(VF_PTR* table){
	for(int i = 0; table[i] != nullptr; ++i){
		printf("[%d]:%p->", i, table[i]);
		VF_PTR f = table[i];
		f();
	}
	cout << endl;
}

int main()
{
	Derive d;
	PrintVFTable(*(VF_PTR**)&d);
	//PrintVFTable(*(VF_PTR**)((char*)&d + sizeof(Base1)));
	Base2* ptr2 = &d;//利用切片,指针会发生偏移
	PrintVFTable(*(VF_PTR**)ptr2);
	return 0;
}

观察下图可以看出:多继承派生类的未重写的虚函数放在第一个继承基类部分的虚函数表中
在这里插入图片描述

int main()
{
	Derive d;
	Base1* ptr1 = &d;
	Base2* ptr2 = &d;//利用切片,指针会发生偏移
	ptr1->func1();
	ptr2->func1();
	d.func1();
	return 0;
}

在汇编中如果从Base2调用func1函数,满足多态条件的,要比Base1调用func1多出一条汇编指令用来修正this指针的位置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/662849.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

qemu虚拟机配置网络

一、实现qemu虚机&宿主机网络互通 qemu虚机的网络介绍及原理可参考前人文章&#xff1a;Linux 内核调试 七&#xff1a;qemu网络配置_lqonlylove的博客-CSDN博客 这里只简单梳理下操作流程&#xff0c;以便快速实现网络互通。 1.宿主机创建 tap0 [rootlocalhost ~]# if…

一文入门Mongodb

目录 概述核心概念下载与安装版本问题环境配置cmd运行 数据库与集合命令数据库命令集合命令文档命令 mongoosemongoose的使用插入字段类型mongoose字段验证与强制性设置删除文档更新文档读取数据条件控制 后记 概述 Mongodb是一个分布式文件存储的数据库。 官网&#xff1a;M…

使用 AI 修复去除不需要的对象

Inpainting 是一种运用了稳定扩散&#xff08;Stable Diffusion&#xff09;技术来部分重绘图像的方法。简单来讲需准备一张图像&#xff0c;绘制一块遮罩以标明想要重绘的图像区域&#xff0c;同时提供一些重绘提示。随后稳定扩散就能根据这些提示&#xff0c;重新绘制遮罩区域…

layui(5)——内置模块分页模块

模块加载名称&#xff1a;laypage laypage 的使用非常简单&#xff0c;指向一个用于存放分页的容器&#xff0c;通过服务端得到一些初始值&#xff0c;即可完成分页渲染&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset&quo…

聊一聊mysql的MVCC

技术主题 在mysql世纪使用中&#xff0c;经常涉及到MVCC的概念&#xff08;Multi-Vsersion Concurrency Control&#xff09;&#xff0c;即多版本并发控制&#xff0c;一种并发控制方法&#xff0c;根本目的是主为了提升数据库的并发性能。 mvcc为什么产生 数据库最原生的锁…

设计模式大全

使用设计模式的目的&#xff1a; 程序猿在编码的过程中面临着来自耦合性、内聚性、可维护性、可扩展性、重用性、灵活性等多方面的挑战。设计模式是为了让程序具有更好的&#xff1a; 1&#xff09;重用性&#xff0c;即相同功能的代码编写一次即可&#xff0c;不用重复编写 …

3-JVM 运行时数据区

目录 1.堆&#xff08;线程共享&#xff09;&#xff08;最大的一块区域&#xff09; 2.Java虚拟机栈&#xff08;线程私有&#xff09; 3.本地方法栈&#xff08;线程私有&#xff09; 4.程序计数器&#xff08;线程私有&#xff09; 5.方法区&#xff08;线程共享&#…

Oracle JSON_ARRAYAGG()函数的默认排序问题

引入&#xff1a; 在实际操作中&#xff0c;俺写了这样一个Funtcion&#xff1a; FUNCTION fun_get_xxx(v_param_one VARCHAR2) RETURN CLOB ASv_OUTPUT CLOB;BEGINWITH temp_table AS (SELECT * FROM (( SELECT one.action_id,two.log_timeFROM table_one oneLEFT JOIN table…

Python程序设计基础:字符串

文章目录 一、字符串二、字符串的索引与切片三、字符串处理与操作四、format()格式化方法五、字符串与数值的转换 一、字符串 在Python中&#xff0c;使用单引号或双引号括起来的内容&#xff0c;称为字符串类型数据&#xff08;str&#xff09;&#xff0c;可以使用以下4种方…

Linux主分区,扩展分区,逻辑分区的联系和区别

基本概念 硬盘分区有三种&#xff0c; 主磁盘分区、扩展 磁盘分区、 逻辑分区。 一个 硬盘 主分区至少有1个&#xff0c;最多4个&#xff0c;扩展分区可以没有&#xff0c;最多1个。且 主分区扩展分区总共不能超过4个。 逻辑分区可以有若干个。 在windows下激活的 主分区是 …

树形结构-二叉树结构

树形结构 树形结构简介 树结构是一种非线性储存结构&#xff0c;存储的是具有“一对多”关系的数据元素的集合 树的相关术语 结点&#xff08;Node&#xff09; 使用树结构存储的每一个数据元素被成为“结点” 结点的度&#xff08;Degree of Node&#xff09; 某个结点所拥…

一次完整的Loadrunner基本流程操作

目录 一.生成脚本&#xff1a; 二.回放脚本&#xff1a; 三.创建场景&#xff1a; 四.生成报告&#xff1a; Loadrunner基本流程操作 准备条件&#xff1a; 一.安装loadrunner 二.破解loadrunner &#xff08;注&#xff1a;本次使用lr11版本可以兼容的IE浏览器版本为I…

Qt简单讲解项目结构

Qt简单讲解项目结构 项目结构 主函数入口 #include "mainwindow.h"#include <QApplication>// 程序入口 argc 表示命令行变量的数量 argv表示命令行变量的数组 int main(int argc, char *argv[]) {// a表示应用程序对象QApplication a(argc, argv);MainWin…

绿色节能数据中心供配电系统设计

随着新一代信息技术的快速发展&#xff0c;数据资源存储、计算和应用需求大幅提升&#xff0c;机房在各个领域都有着广泛的应用&#xff0c;如学校内有专用机房、通信类企业有通信机房等。近年来&#xff0c;国家对新型数据中心机房建设也越来越重视&#xff0c;据工信部、国家…

Flutter私服搭建之package查询

温馨提示&#xff1a;这是一篇私有的package客户端查询的平台搭建文章&#xff0c;牵扯到python中的Djiango框架&#xff0c;虽和Flutter相关&#xff0c;但客户端的代码并没有关联&#xff0c;请您根据需要进行阅读。 公有的package&#xff0c;对于一个Flutter开发者而言&…

centos + lnmp + tp6部署的项目,访问的时候经常出现No input file specified

1.检查路径设置 检查你的 Nginx 配置文件是否正确指定了 PHP 路径&#xff0c;确认文件路径是否正确。同时&#xff0c;确保你的 Web 服务器具有访问权限。 server { listen 80; server_name example.com; root /usr/share/nginx/html; index index.html ind…

汽车电子行业ECU烧录工艺人必须面对的重要课题

在汽车电子行业ECU烧录是很一个关键工序&#xff0c;如何有效地通过对它的过程进行管控是每个工艺人必须面对的重要课题。 为了解决烧录过程管控的问题&#xff0c;我们合共软件针对汽车电子行业研发的HG MES中有专门的烧录模块用于应对这一问题。对ECU烧录管控的核心目标是如…

MySQL 数据库的命令操作

文章目录 一.Mysql数据库的基本概念二.Mysql数据库系统发展史三.现主流Mysql数据库介绍四.关系数据库五.非关系数据库介绍六.MySQL安装方法1. 创建新的数据库2.创建新的表3.删除指定的数据库4.删除指定的数据表5.向数据表中插入新的数据记录6.修改、更新数据表中的数据记录7.在…

腾讯云对象存储COS及CDN加速配置

1. 登陆腾讯云官网&#xff0c;进入腾讯云对象存储COS控制台 腾讯云&#xff1a;https://cloud.tencent.com 2. 创建存储空间 3. 添加自定义CDN加速域名 在腾讯云COS的指定的存储桶中添加自定义CDN加速域名 在阿里云官网添加一个解析记录&#xff0c;等待两分钟就可以用该域名…

新书上市丨开启学习自然语言处理与ChatGPT的精彩旅程,你需要这本书!

2022年10月30日&#xff0c;ChatGPT 的横空出世&#xff0c;引起了全球范围内的广泛关注。微软创始人比尔盖茨 (Bill Gates) 认为 “ChatGTP 与互联网具有同等重要的意义”。作为一个人工智能系统&#xff0c;ChatGPT 能准确识别用户意图&#xff0c;与用户进行对话并提供有价值…