使用torch的自动微分实现自定义函数优化

news2025/1/12 6:02:14

前言

目的是利用torch已经有的自动微分机制,进行参数迭代更新,就不用自己写代码算了。

文章目录

  • 前言
  • 1. 待优化函数
    • 1.1 解释
  • 2. 代码
  • 3. 结果

1. 待优化函数

y = 10 × ( x 1 + x 2 − 5 ) 2 + ( x 1 − x 2 ) 2 y=10\times(x_1+x_2-5)^2+(x_1-x_2)^2 y=10×(x1+x25)2+(x1x2)2

1.1 解释

这里我们把[10,5]看成inputs,整个函数就是model, [x1,x2]就是需要迭代优化的参数。我们要求使得y=0时的参数。根据我们的先验知识,我们期望输出的结果是 5 2 \frac{5}{2} 25, 5 2 \frac{5}{2} 25

2. 代码

import torch
from torch import nn

# y = 10*(x1+x2-5)^2 + (x1-x2)^2
class Func(nn.Module):
    def __init__(self, size=2):
        super(Func, self).__init__()
        params = torch.rand((size,1),requires_grad=True)
        self.params = nn.Parameter(params)
    
    def forward(self, inputs):
        y = inputs[0] * torch.pow(self.params[0]+self.params[1]-inputs[1],2)\
        + torch.pow(self.params[0]-self.params[1],2)
        return y

class cusLoss(nn.Module):
    def __init__(self):
        super(cusLoss, self).__init__()
    
    def forward(self,y_pred, y_true):
        return torch.abs(y_true-y_pred)

model = Func(size=2)

optimizer = torch.optim.AdamW(model.parameters(),lr=1,weight_decay=1e-5)
loss_func = cusLoss()
x = torch.tensor([10,5])

for i in range(400):
    y_pred = model(x)
    loss = loss_func(y_pred,0)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    print("loss: ", loss.item())

for item in model.parameters():
    print(item)

lr从10调到1,感觉loss就比较好了。

3. 结果

在这里插入图片描述

loss:  156.83274841308594
loss:  38.49453353881836
loss:  0.23079237341880798
loss:  18.87002944946289
loss:  47.266353607177734
loss:  53.96223449707031
loss:  40.30459976196289
loss:  19.8029842376709
loss:  4.426110744476318
loss:  0.13327637314796448
loss:  5.848392009735107
loss:  15.253518104553223
loss:  21.365623474121094
loss:  20.824350357055664
loss:  14.78664779663086
loss:  7.028133392333984
loss:  1.4270392656326294
loss:  0.08896948397159576
loss:  2.5925991535186768
loss:  6.561254978179932
loss:  9.249794960021973
loss:  9.138370513916016
loss:  6.541881561279297
loss:  3.0825929641723633
loss:  0.5860095620155334
loss:  0.07377026975154877
loss:  1.3241856098175049
loss:  3.1676881313323975
loss:  4.294349193572998
loss:  4.038957118988037
loss:  2.664410352706909
loss:  1.0545320510864258
loss:  0.0981285348534584
loss:  0.16388599574565887
loss:  0.9541118741035461
loss:  1.7817351818084717
loss:  2.053565502166748
loss:  1.6271475553512573
loss:  0.8293525576591492
loss:  0.17544522881507874
loss:  0.011017587967216969
loss:  0.313961386680603
loss:  0.7632603049278259
loss:  0.9963911771774292
loss:  0.8582224249839783
loss:  0.4731455445289612
loss:  0.116444431245327
loss:  0.0019159330986440182
loss:  0.14314040541648865
loss:  0.3744982182979584
loss:  0.49575677514076233
loss:  0.4202014207839966
loss:  0.2189445197582245
loss:  0.044234275817871094
loss:  0.005240241996943951
loss:  0.09423969686031342
loss:  0.21066127717494965
loss:  0.25115442276000977
loss:  0.18814465403556824
loss:  0.07860895991325378
loss:  0.0066448356956243515
loss:  0.01395349856466055
loss:  0.07405033707618713
loss:  0.1240086629986763
loss:  0.12016353011131287
loss:  0.0697774738073349
loss:  0.01685400679707527
loss:  0.0004727207124233246
loss:  0.02368409000337124
loss:  0.05685136467218399
loss:  0.06748046725988388
loss:  0.047708846628665924
loss:  0.01680355705320835
loss:  0.0003963433555327356
loss:  0.007644111756235361
loss:  0.02610907331109047
loss:  0.0360269770026207
loss:  0.028617529198527336
loss:  0.011885224841535091
loss:  0.0007842279155738652
loss:  0.0028550983406603336
loss:  0.012763937003910542
loss:  0.019207362085580826
loss:  0.016054006293416023
loss:  0.006997825112193823
loss:  0.0005394043400883675
loss:  0.0014044318813830614
loss:  0.006836464628577232
loss:  0.010403113439679146
loss:  0.008586933836340904
loss:  0.003567643463611603
loss:  0.00020178437989670783
loss:  0.0009794053621590137
loss:  0.004060074221342802
loss:  0.005762426648288965
loss:  0.004401565529406071
loss:  0.001568805892020464
loss:  2.635764940350782e-05
loss:  0.0008179567521438003
loss:  0.002542160451412201
loss:  0.0031480903271585703
loss:  0.0020700229797512293
loss:  0.000531529716681689
loss:  1.5086681742104702e-05
loss:  0.0007311901426874101
loss:  0.0016244511352851987
loss:  0.0016573555767536163
loss:  0.0008591370424255729
loss:  0.00011040566459996626
loss:  9.262182720704004e-05
loss:  0.0006213163724169135
loss:  0.0009869090281426907
loss:  0.0007818497833795846
loss:  0.0002726784732658416
loss:  2.5415104119019816e-06
loss:  0.00017136213136836886
loss:  0.00048359768697991967
loss:  0.0005475623183883727
loss:  0.00030850598705001175
loss:  4.818948218598962e-05
loss:  2.336039688088931e-05
loss:  0.00019348246860317886
loss:  0.0003168497933074832
loss:  0.00024830293841660023
loss:  8.038982196012512e-05
loss:  2.252596686957986e-08
loss:  6.616349855903536e-05
loss:  0.00016678131942171603
loss:  0.00017271166143473238
loss:  8.399917714996263e-05
loss:  7.142824415495852e-06
loss:  1.6916283129830845e-05
loss:  7.81318376539275e-05
loss:  0.00010478033073013648
loss:  6.641951040364802e-05
loss:  1.2883243471151218e-05
loss:  3.119921984762186e-06
loss:  3.588973049772903e-05
loss:  6.165451486594975e-05
loss:  4.818914021598175e-05
loss:  1.456955124012893e-05
loss:  7.381692057606415e-08
loss:  1.4879115951771382e-05
loss:  3.3393916964996606e-05
loss:  3.068727164645679e-05
loss:  1.1735791304090526e-05
loss:  1.3357407624425832e-07
loss:  6.764242698409362e-06
loss:  1.9035425793845206e-05
loss:  1.9952953152824193e-05
loss:  9.178495929518249e-06
loss:  4.976278091817221e-07
loss:  2.7312034944770858e-06
loss:  1.0013219252869021e-05
loss:  1.1602534868870862e-05
loss:  5.797338872071123e-06
loss:  4.113908858016657e-07
loss:  1.4342235772346612e-06
loss:  5.989348665025318e-06
loss:  7.375299446721328e-06
loss:  3.998892680101562e-06
loss:  4.2068927541549783e-07
loss:  6.325563504105958e-07
loss:  3.202781499567209e-06
loss:  4.100205842405558e-06
loss:  2.1982234557071934e-06
loss:  1.9405547391215805e-07
loss:  4.73600323402934e-07
loss:  2.1346897938201437e-06
loss:  2.6749878543341765e-06
loss:  1.4465717868006323e-06
loss:  1.4582843732569017e-07
loss:  2.3943954374772147e-07
loss:  1.1561919563973788e-06
loss:  1.4047566310182447e-06
loss:  6.778419106012734e-07
loss:  2.8631802706513554e-08
loss:  2.509316345822299e-07
loss:  8.661324955028249e-07
loss:  9.58465079747839e-07
loss:  4.4112675823271275e-07
loss:  2.068622961814981e-08
loss:  1.3861813386029098e-07
loss:  4.55244389740983e-07
loss:  4.510482085606782e-07
loss:  1.5433130329256528e-07
loss:  1.1869474292325322e-09
loss:  1.6850668771439814e-07
loss:  3.73103375750361e-07
loss:  3.215137098777632e-07
loss:  1.0316830412193667e-07
loss:  1.460307430534158e-10
loss:  8.736839163248078e-08
loss:  1.7326237866654992e-07
loss:  1.1830303492388339e-07
loss:  1.6191336271731416e-08
loss:  1.859552867244929e-08
loss:  1.1124279808427673e-07
loss:  1.5508044270973187e-07
loss:  9.294950586991035e-08
loss:  1.3275212040753104e-08
loss:  7.75889930082485e-09
loss:  4.7226023980329046e-08
loss:  5.3971746183378855e-08
loss:  1.7632885374041507e-08
loss:  5.916831469221506e-10
loss:  3.007107807206921e-08
loss:  6.265560159590677e-08
loss:  5.392854518504464e-08
loss:  1.8428409020998515e-08
loss:  5.690026227966882e-11
loss:  9.340737960883416e-09
loss:  1.8043010641122237e-08
loss:  9.34875288294279e-09
loss:  7.190692485892214e-11
loss:  8.770314252615208e-09
loss:  2.557277412051917e-08
loss:  2.8033127819071524e-08
loss:  1.384620418320992e-08
loss:  1.545231498312205e-09
loss:  1.1041265679523349e-09
loss:  4.812136467080563e-09
loss:  3.2833327168191317e-09
loss:  2.0691004465334117e-11
loss:  3.639399892563233e-09
loss:  1.146554495790042e-08
loss:  1.4196075426298194e-08
loss:  8.747122137719998e-09
loss:  2.0532411326712463e-09
loss:  1.5973000699887052e-11
loss:  9.15179043659009e-10
loss:  5.866809260623995e-10
loss:  4.001776687800884e-11
loss:  2.049148406513268e-09
loss:  6.149605269456515e-09
loss:  7.649362032680074e-09
loss:  5.2387463256309275e-09
loss:  1.7826664588938002e-09
loss:  1.1164047464262694e-10
loss:  3.68913788406644e-11
loss:  9.606537787476555e-12
loss:  2.2788526621297933e-10
loss:  1.7835191101767123e-09
loss:  4.012292720290134e-09
loss:  4.403375442052493e-09
loss:  3.284696958871791e-09
loss:  1.3110934560245369e-09
loss:  3.283275873400271e-10
loss:  8.236611392931081e-11
loss:  1.1164047464262694e-10
loss:  5.821334525535349e-10
loss:  1.5370460459962487e-09
loss:  2.6284396881237626e-09
loss:  2.9468196771631483e-09
loss:  2.1852883946849033e-09
loss:  1.1010001799149904e-09
loss:  5.125002644490451e-10
loss:  3.2883917810977437e-10
loss:  3.851710062008351e-10
loss:  7.372022992058191e-10
loss:  1.537557636765996e-09
loss:  2.0465904526645318e-09
loss:  2.0465904526645318e-09
loss:  1.537273419671692e-09
loss:  9.09551545191789e-10
loss:  5.821334525535349e-10
loss:  5.821334525535349e-10
loss:  6.571099220309407e-10
loss:  9.09551545191789e-10
loss:  1.3097292139718775e-09
loss:  1.657781467656605e-09
loss:  1.537557636765996e-09
loss:  1.310183961322764e-09
loss:  9.100062925426755e-10
loss:  5.825881999044213e-10
loss:  5.825881999044213e-10
loss:  8.21046342025511e-10
loss:  1.100545432564104e-09
loss:  1.4210854715202004e-09
loss:  1.5371028894151095e-09
loss:  1.3097292139718775e-09
loss:  9.09551545191789e-10
loss:  7.369180821115151e-10
loss:  6.573372957063839e-10
loss:  7.369180821115151e-10
loss:  9.09551545191789e-10
loss:  1.3097292139718775e-09
loss:  1.3097292139718775e-09
loss:  1.3097292139718775e-09
loss:  1.0027179087046534e-09
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  7.369180821115151e-10
loss:  9.097220754483715e-10
loss:  1.1007159628206864e-09
loss:  1.2030341167701408e-09
loss:  1.100545432564104e-09
loss:  1.0027179087046534e-09
loss:  9.09551545191789e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  1.100545432564104e-09
loss:  1.100545432564104e-09
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  1.100545432564104e-09
loss:  1.0027179087046534e-09
loss:  9.094947017729282e-10
loss:  8.208189683500677e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  1.100545432564104e-09
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  8.208189683500677e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  8.208189683500677e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  8.208189683500677e-10
loss:  8.208189683500677e-10
loss:  8.208189683500677e-10
loss:  8.208189683500677e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  5.821334525535349e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  9.09551545191789e-10
loss:  9.09551545191789e-10
loss:  7.366907084360719e-10
loss:  6.571099220309407e-10
loss:  5.821334525535349e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  9.09551545191789e-10
loss:  7.367475518549327e-10
loss:  7.366907084360719e-10
loss:  7.367475518549327e-10
loss:  5.821334525535349e-10
loss:  7.367475518549327e-10
loss:  7.366907084360719e-10
loss:  7.366907084360719e-10
loss:  7.366907084360719e-10
loss:  7.366907084360719e-10
loss:  7.366907084360719e-10
loss:  7.366907084360719e-10
loss:  7.367475518549327e-10
loss:  5.821334525535349e-10
loss:  5.821334525535349e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  8.208189683500677e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  5.821334525535349e-10
loss:  5.821334525535349e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  7.367475518549327e-10
loss:  6.571099220309407e-10
loss:  6.571099220309407e-10
loss:  6.571099220309407e-10
loss:  6.571099220309407e-10
loss:  6.571099220309407e-10
loss:  6.571099220309407e-10
loss:  6.571099220309407e-10
Parameter containing:
tensor([[2.5000],
        [2.5000]], requires_grad=True)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/656870.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

oracle中如何修改日期类型的字段值

系列文章目录 文章目录 系列文章目录前言一、数据库表方式进行修改二、sql方式步骤总结 前言 Oracle是一家全球领先的数据库管理系统(DBMS)和企业软件公司。Oracle Corporation成立于1977年,总部位于美国加利福尼亚州的红木城(Re…

SpringBoot整合篇

SpringBoot整合第三方技术 1、整合缓存 何为缓存? 缓存是一种介于数据永久存储介质与数据应用之间的数据临时存储介质使用缓存可以有效的减少低速数据读取过程的次数(例如磁盘IO),提高系统性能缓存不仅可以用于提高永久性存储介…

腾讯云最新社招面经出炉(面试原题+答案解析)

前言 大家好,今天给大家分享一篇腾讯云的面经,以下是面试题和答案。加油,一起卷。 聊聊项目,好的设计,好的代码 谈谈什么是零拷贝? 一共有几种 IO 模型?NIO 和多路复用的区别? F…

Get请求参数过多导致请求失败

1. 问题 系统正常使用没有问题,但是有极个别的用户出现系统异常,通过日志发现某个get请求,传入的城市list太多,就会抛出异常 java.lang.ClassCastException: java.lang.String cannot be cast to java.util.Map。 2. 排查过程 …

Elasticsearch 安装(Linux)

ElasticSearch 概念安装安装es 后台启动 & 停止启动nohup 记录pid 停止 其他启动错误max number of threads内存不足 Cannot allocate memoryfailed to obtain node locks 概念 ES是一款分布式全文搜索引擎,基于Lucene,进行了二次封装,更…

ElasticSearch笔记02-ElasticSearch入门

ElasticSearch安装 下载软件 ElasticSearch的官网,视频教程里用的Version是7.8.0,所以,我们也是用7.8.0版本的ElasticSearch。 下载地址:https://www.elastic.co/cn/downloads/past-releases#elasticsearch,然后搜索…

车载诊断协议 —— 诊断服务Service 11

我是穿拖鞋的汉子,魔都中坚持长期主义的工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 在最艰难的时候,自己就别去幻想太远的将来,只要鼓励自己过好今天就行了! 这世间有太多的猝不及防,有些东西根本不配占有自己的情绪,人生就是一场体验,…

一种栅格数据的空间聚类方法(ACA-Cluster)

本文结合实例详细讲解了如何使用Python对栅格数据进行空间聚类,关注公众号GeodataAnalysis,回复20230616获取示例数据和代码,包含整体的写作思路,上手运行一下代码更容易弄懂。 带有非空间属性的空间数据聚类分析是空间聚类研究的…

English Learning - L3 作业打卡 Lesson6 Day43 2023.6.16 周五

English Learning - L3 作业打卡 Lesson6 Day43 2023.6.16 周五 引言🍉句1: Thousands of lanterns slowly drift out to sea guiding the dead on their return journey to the other world.成分划分弱读连读爆破语调 🍉句2: This is a moving spectacl…

炎炎夏日!东南亚LazadaShopee泳衣品类热销榜单来袭

6月商机无限,趁热打铁!3大节庆即将来袭。小编特为卖家整理了6月最强爆单选品指南,揭秘东南亚泳衣市场。赶紧一睹为快吧! 炎炎夏日,马上即将迎来暑假,海边游玩肯定成了小朋友即家长们的首选之地&#xff0c…

js将json字符串转换为json对象的方法解析

将json字符串转换为json对象的方法。在数据传输过程中,json是以文本,即字符串的形式传递的,而JS操作的是JSON对象,所以,JSON对象和JSON字符串之间的相互转换是关键。 例如: JSON字符串: var str1 ‘{ “n…

MIT 6.S081 Lab Three

MIT 6.S081 Lab Three 引言page tablesPrint a page table (easy)代码解析 A kernel page table per process (hard)代码解析 Simplify copyin/copyinstr(hard)代码解析 可选的挑战练习 引言 本文为 MIT 6.S081 2020 操作系统 实验三解析。 MIT 6.S081…

shardingsphere第一课-前置课程-Mysql的集群搭建以及多数据源管理

一.Mysql的集群搭建(使用docker搭建省事) 1、关闭防火墙,重启docker** #关闭docker systemctl stop docker #关闭防火墙 systemctl stop firewalld #启动docker systemctl start docker2.1、准备主服务器 解释: 端口号是3306, 指定宿主机配…

FPGA基础知识-时序和延迟

目录 学习目标: 学习内容: 1.延迟模型的类型 2.路径延迟建模 3.时序检查 4.延迟反标注 学习时间: 学习总结 学习目标: 提示:这里可以添加学习目标 鉴别Verilog 仿真中用到的延迟模型的类型,分布延…

YOLOv5改进系列(10)——替换主干网络之GhostNet

【YOLOv5改进系列】前期回顾: YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析 YOLOv5改进系列(1)——添加SE注意力机制

项目中还不会用SpringSecurity,看这篇文章就够了

安全管理是Java应用开发中无法避免的问题,随着Spring Boot和微服务的流行,Spring Security受到越来越多Java开发者的重视,究其原因,还是沾了微服务的光。作为Spring家族中的一员,其在和Spring家族中的其他产品如SpringBoot、Spring Cloud等进…

client-go的Indexer三部曲之而:性能测试

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《client-go的Indexer》系列的第二篇,在前文咱们通过实例掌握了client-go的Indexer的基本功能,本篇咱们尝试对下面这…

6.pixi.js编写的塔防游戏(类似保卫萝卜)-游戏资源打包逻辑

游戏说明 一个用pixi.js编写的h5塔防游戏,可以用electron打包为exe,支持移动端,也可以用webview控件打包为app在移动端使用 环境说明 cnpm6.2.0 npm6.14.13 node12.22.7 npminstall3.28.0 yarn1.22.10 npm config list electron_mirr…

配置legacyUnhandledExceptionPolicy属性防止处理异常后程序崩溃退出(C#)

这是这篇文章后面遗留的问题: winform中的全局异常信息_winform全局异常捕获_zxy2847225301的博客-CSDN博客 就是线程抛出异常后,被AppDomain.CurrentDomain.UnhandledException注册的事件捕获后,程序依旧崩溃退出。 解决方案:在…

架构-嵌入式模块

章节架构 约三分,主要为选择题 #mermaid-svg-z6RGCDSEQT5AhE1p {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-z6RGCDSEQT5AhE1p .error-icon{fill:#552222;}#mermaid-svg-z6RGCDSEQT5AhE1p .error-text…