【JAVA集合篇】ArrayList源码详解

news2024/12/23 4:47:09

文章目录

  • 前言
  • 继承体系
  • 源码解析
    • 属性
    • ArrayList(int initialCapacity)构造方法
  • ArrayList()构造方法
    • ArrayList 构造方法
    • add(E e)方法
    • add(int index, E element)方法
    • addAll 方法
    • get(int index)方法
    • remove(int index)方法
    • remove(Object o)方法
    • retainAll方法
    • removeAll
  • 总结


前言

ArrayList是一种以数组实现的List,与数组相比,它具有动态扩展的能力,因此也可称之为动态数组。

在ArrayList集合里面可以存储任何类型的数据, 而且它是一个顺序容器,存放的数据顺序就是和我们放入的顺序是一致的,而且它还允许我们放入null元素。

继承体系

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
        
	{...}
  • ArrayList实现了List,提供了基础的添加、删除、遍历等操作。

  • ArrayList实现了RandomAccess,提供了随机访问的能力。

  • ArrayList实现了Cloneable,可以被克隆。

  • ArrayList实现了Serializable,可以被序列化。

源码解析

属性

	/**
	 * 默认容量
	 */
	private static final int DEFAULT_CAPACITY = 10;
	
	/**
	 * 空数组,如果传入的容量为0时使用
	 */
	private static final Object[] EMPTY_ELEMENTDATA = {};
	
	/**
	 * 空数组,传传入容量时使用,添加第一个元素的时候会重新初始为默认容量大小
	 */
	private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
	
	/**
	 * 存储元素的数组
	 */
	transient Object[] elementData; // non-private to simplify nested class access
	
	/**
	 * 集合中元素的个数
	 */
	private int size;

(1)DEFAULT_CAPACITY:默认容量为10,也就是通过new ArrayList()创建时的默认容量。

(2)EMPTY_ELEMENTDATA:空的数组,这种是通过new ArrayList(0)创建时用的是这个空数组。

(3)DEFAULTCAPACITY_EMPTY_ELEMENTDATA:也是空数组,这种是通过new ArrayList()创建时用的是这个空数组,与EMPTY_ELEMENTDATA的区别是在添加第一个元素时使用这个空数组的会初始化为DEFAULT_CAPACITY(10)个元素。

(4)elementData:真正存放元素的地方。

(5)size:真正存储元素的个数,而不是elementData数组的长度。

为什么ArrayList的elementData数组要加上transient修饰?

由于ArrayList有自动扩容机制,所以ArrayList的elementData数组大小往往比现有的元素数量大,如果不加transient直接序列化的话会把数组中空余的位置也序列化了,浪费不少的空间。

ArrayList中重写了序列化和反序列化对应的writeObjectreadObject方法,在遍历数组元素时,以 size 作为结束标志,只序列化ArrayList中已经存在的元素。

ArrayList(int initialCapacity)构造方法

public ArrayList(int initialCapacity) {
    if (initialCapacity > 0) {
        // 如果传入的初始容量大于0,就新建一个数组存储元素
        this.elementData = new Object[initialCapacity];
    } else if (initialCapacity == 0) {
        // 如果传入的初始容量等于0,使用空数组EMPTY_ELEMENTDATA
        this.elementData = EMPTY_ELEMENTDATA;
    } else {
        // 如果传入的初始容量小于0,抛出异常
        throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity);
    }
}

ArrayList()构造方法

public ArrayList() {
    // 如果没有传入初始容量,则使用空数组DEFAULTCAPACITY_EMPTY_ELEMENTDATA
    // 使用这个数组是在添加第一个元素的时候会扩容到默认大小10
    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}

ArrayList 构造方法

/**
* 把传入集合的元素初始化到ArrayList中
*/
public ArrayList(Collection<? extends E> c) {
    // 集合转数组
    elementData = c.toArray();
    if ((size = elementData.length) != 0) {
        // 检查c.toArray()返回的是不是Object[]类型,如果不是,重新拷贝成Object[].class类型
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    } else {
        // 如果c的空集合,则初始化为空数组EMPTY_ELEMENTDATA
        this.elementData = EMPTY_ELEMENTDATA;
    }
}

add(E e)方法

添加元素到末尾,平均时间复杂度为O(1)。

public boolean add(E e) {
    // 检查是否需要扩容
    ensureCapacityInternal(size + 1);
    // 把元素插入到最后一位
    elementData[size++] = e;
    return true;
}

private void ensureCapacityInternal(int minCapacity) {
    ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}

private static int calculateCapacity(Object[] elementData, int minCapacity) {
    // 如果是空数组DEFAULTCAPACITY_EMPTY_ELEMENTDATA,就初始化为默认大小10
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        return Math.max(DEFAULT_CAPACITY, minCapacity);
    }
    return minCapacity;
}

private void ensureExplicitCapacity(int minCapacity) {
    modCount++;

    if (minCapacity - elementData.length > 0)
        // 扩容
        grow(minCapacity);
}

private void grow(int minCapacity) {
    int oldCapacity = elementData.length;
    // 新容量为旧容量的1.5倍
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    // 如果新容量发现比需要的容量还小,则以需要的容量为准
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
    // 如果新容量已经超过最大容量了,则使用最大容量
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    // 以新容量拷贝出来一个新数组
    elementData = Arrays.copyOf(elementData, newCapacity);
}

add(int index, E element)方法

添加元素到指定位置,平均时间复杂度为O(n)。

public void add(int index, E element) {
    // 检查是否越界
    rangeCheckForAdd(index);
    // 检查是否需要扩容
    ensureCapacityInternal(size + 1);
    // 将inex及其之后的元素往后挪一位,则index位置处就空出来了
    System.arraycopy(elementData, index, elementData, index + 1,
                     size - index);
    // 将元素插入到index的位置
    elementData[index] = element;
    // 大小增1
    size++;
}

private void rangeCheckForAdd(int index) {
    if (index > size || index < 0)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

ArrayList在新增的时候为什么慢?

通过以上的源码,我们可以看出ArrayList有指定index新增,也有直接新增的,在这之前他会有一步校验长度的判断ensureCapacityInternal,就是说如果长度不够,是需要扩容的。

在扩容的时候,老版本的jdk和8以后的版本是有区别的,8之后的效率更高了,采用了位运算,右移一位,其实就是除以2这个操作。int newCapacity = oldCapacity + (oldCapacity >> 1);新增后的数组容量是旧数组容量的1.5倍。

指定位置新增的时候,在校验之后的操作很简单,就是数组的copy,System.arraycopy(elementData, index, elementData, index + 1, size - index);,为了更好的解释,这里画个图,如下:

比如有下面这样一个数组我需要在index 4 的位置去新增一个元素 a

image-20220302112943491

从代码里面我们可以看到,它复制了一个数组,是从index 4 的位置开始的,然后把它放在了index 4+1 的位置

image-20220302113056958

给我们要新增的元素腾出了位置,然后在index的位置放入元素a就完成了新增的操作了。

image-20220302113127354

这只是在一个这么小的List里面操作,要是我去一个几百几千几万大小的List新增一个元素,那就需要后面所有的元素都复制,然后如果再涉及到扩容啥的就更慢了不是嘛。

addAll 方法

求两个集合的并集。

/**
* 将集合c中所有元素添加到当前ArrayList中
*/
public boolean addAll(Collection<? extends E> c) {
    // 将集合c转为数组
    Object[] a = c.toArray();
    int numNew = a.length;
    // 检查是否需要扩容
    ensureCapacityInternal(size + numNew);
    // 将c中元素全部拷贝到数组的最后
    System.arraycopy(a, 0, elementData, size, numNew);
    // 大小增加c的大小
    size += numNew;
    // 如果c不为空就返回true,否则返回false
    return numNew != 0;
}

get(int index)方法

获取指定索引位置的元素,时间复杂度为O(1)。

public E get(int index) {
    // 检查是否越界
    rangeCheck(index);
    // 返回数组index位置的元素
    return elementData(index);
}

private void rangeCheck(int index) {
    if (index >= size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

E elementData(int index) {
    return (E) elementData[index];
}

(1)检查索引是否越界,这里只检查是否越上界,如果越上界抛出IndexOutOfBoundsException异常,如果越下界抛出的是ArrayIndexOutOfBoundsException异常。

(2)返回索引位置处的元素;

remove(int index)方法

删除指定索引位置的元素,时间复杂度为O(n)。

public E remove(int index) {
    // 检查是否越界
    rangeCheck(index);

    modCount++;
    // 获取index位置的元素
    E oldValue = elementData(index);

    // 如果index不是最后一位,则将index之后的元素往前挪一位
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index, numMoved);

    // 将最后一个元素删除,帮助GC
    elementData[--size] = null; // clear to let GC do its work

    // 返回旧值
    return oldValue;
}

remove(Object o)方法

删除指定元素值的元素,时间复杂度为O(n)。

public boolean remove(Object o) {
    if (o == null) {
        // 遍历整个数组,找到元素第一次出现的位置,并将其快速删除
        for (int index = 0; index < size; index++)
            // 如果要删除的元素为null,则以null进行比较,使用==
            if (elementData[index] == null) {
                fastRemove(index);
                return true;
            }
    } else {
        // 遍历整个数组,找到元素第一次出现的位置,并将其快速删除
        for (int index = 0; index < size; index++)
            // 如果要删除的元素不为null,则进行比较,使用equals()方法
            if (o.equals(elementData[index])) {
                fastRemove(index);
                return true;
            }
    }
    return false;
}

private void fastRemove(int index) {
    // 少了一个越界的检查
    modCount++;
    // 如果index不是最后一位,则将index之后的元素往前挪一位
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index, numMoved);
    // 将最后一个元素删除,帮助GC
    elementData[--size] = null; // clear to let GC do its work
}

(1)找到第一个等于指定元素值的元素;

(2)快速删除,fastRemove(int index)相对于remove(int index)少了检查索引越界的操作。

retainAll方法

求两个集合的交集。

public boolean retainAll(Collection<?> c) {
    // 集合c不能为null
    Objects.requireNonNull(c);
    // 调用批量删除方法,这时complement传入true,表示删除不包含在c中的元素
    return batchRemove(c, true);
}

/**
* 批量删除元素
* complement为true表示删除c中不包含的元素
* complement为false表示删除c中包含的元素
*/
private boolean batchRemove(Collection<?> c, boolean complement) {
    final Object[] elementData = this.elementData;
    // 使用读写两个指针同时遍历数组
    // 读指针每次自增1,写指针放入元素的时候才加1
    // 这样不需要额外的空间,只需要在原有的数组上操作就可以了
    int r = 0, w = 0;
    boolean modified = false;
    try {
        // 遍历整个数组,如果c中包含该元素,则把该元素放到写指针的位置(以complement为准)
        for (; r < size; r++)
            if (c.contains(elementData[r]) == complement)
                elementData[w++] = elementData[r];
    } finally {
        // 正常来说r最后是等于size的,除非c.contains()抛出了异常
        if (r != size) {
            // 如果c.contains()抛出了异常,则把未读的元素都拷贝到写指针之后
            System.arraycopy(elementData, r,
                             elementData, w,
                             size - r);
            w += size - r;
        }
        if (w != size) {
            // 将写指针之后的元素置为空,帮助GC
            for (int i = w; i < size; i++)
                elementData[i] = null;
            modCount += size - w;
            // 新大小等于写指针的位置(因为每写一次写指针就加1,所以新大小正好等于写指针的位置)
            size = w;
            modified = true;
        }
    }
    // 有修改返回true
    return modified;
}

(1)遍历elementData数组;

(2)如果元素在 c 中,则把这个元素添加到 elementData 数组的 w 位置并将 w 位置往后移一位;

(3)遍历完之后,w 之前的元素都是两者共有的,w 之后(包含)的元素不是两者共有的;

(4)将 w 之后(包含)的元素置为null,方便 GC 回收;

removeAll

求两个集合的单方向差集,只保留当前集合中不在c中的元素,不保留在c中不在当前集体中的元素。

public boolean removeAll(Collection<?> c) {
    // 集合c不能为空
    Objects.requireNonNull(c);
    // 同样调用批量删除方法,这时complement传入false,表示删除包含在c中的元素
    return batchRemove(c, false);
}

retainAll(Collection<?> c)方法类似,只是这里保留的是不在c中的元素。

总结

(1)ArrayList内部使用数组存储元素,扩容时,每次加一半的空间,ArrayList不会进行缩容。

(2)ArrayList支持随机访问,通过索引访问元素极快,时间复杂度为O(1)。

(3)ArrayList添加元素到尾部极快,平均时间复杂度为O(1)。

(4)ArrayList添加元素到中间比较慢,因为要搬移元素,平均时间复杂度为O(n)。

(5)ArrayList从尾部删除元素极快,时间复杂度为O(1)。

(6)ArrayList从中间删除元素比较慢,因为要搬移元素,平均时间复杂度为O(n)。

(7)ArrayList支持求并集,调用addAll(Collection<? extends E> c)方法即可。

(8)ArrayList支持求交集,调用retainAll(Collection<? extends E> c)方法即可。

(7)ArrayList支持求单向差集,调用removeAll(Collection<? extends E> c)方法即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/653139.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Java高级语法】(四)包装类:关于包装类的那些细节你都清楚吗?~

Java高级语法详解之包装类 :one: 概念:two: 设计目的&#xff08;作用&#xff09;和用途:three: 使用3.1 自动装箱与拆箱3.2 常用方法3.3 常用属性3.4 null和默认值 :four: 注意事项:ear_of_rice: 总结:bookmark_tabs: 本文源码下载地址 1️⃣ 概念 在Java编程中&#xff0c;…

什么是TM的kotlin协程?就是靠 恢复和挂起,像同步一样写异步代码

作者&#xff1a;J船长 一、协程协程&#xff0c;恢复挂起&#xff0c;让异步像同步 重要的说三遍 协程协程&#xff0c;恢复挂起&#xff0c;让异步像同步协程协程&#xff0c;恢复挂起&#xff0c;让异步像同步协程协程&#xff0c;恢复挂起&#xff0c;让异步像同步 经常…

Apikit 自学日记:导入第三方产品 API 数据

除了手动创建API文档&#xff0c;系统也提供了一键导入 Swagger、Postman、RAP、YAPI 等产品数据的功能。方便从其他平台进行迁移。 产品支持度导入文件的后缀名Eolinker API 研发管理完全支持.jsonPostman V2.1支持导入API基础信息&#xff0c;超过10级分组的API数据将不会被导…

接口测试——接口测试文档

在执行接口测试前&#xff0c;测试人员肯定会先拿到开发给予的接口文档。测试人员可以根据这个文 档编写接口测试用例。所以&#xff0c;我们要先了解接口文档的主要构成及含义。 以购买开心产品项目接口文档为例&#xff0c;解析一下接口文档的组成。 完整的接口文档有公共信…

【VMD-DBO-LSTM】变分模态分解-蜣螂优化算法-长短时记忆神经网络研究(Python代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

乐鑫 Thread 边界路由器解决方案

乐鑫科技 Thread 边界路由器 (Thread Border Router) 解决方案正式获得了由 Thread Group 颁发的 Thread Certified Component 证书&#xff0c;符合最新的 Thread 1.3 标准&#xff0c;并支持 Matter 应用场景。 本文将深入探讨该解决方案的技术细节和优势&#xff0c;以及如…

springboot+vue在线考试系统(java项目源码+文档)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的在线考试系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 &#x1f495;&#x1f495;作者&#xff1a;风歌&a…

Unity编辑器扩展-第五集-撤回操作/禁止操作/加快捷键

第四集链接&#xff1a;Unity编辑器扩展-第四集-获取物体的方法_菌菌巧乐兹的博客-CSDN博客 一、本节目标效果展示 1.加入撤回操作 众所周知“撤回是ctrlz”,但如果你前几集仔细练习了&#xff0c;你会发现一个让你头痛不已的事情&#xff0c;用代码改的东西没法撤回。现在就…

JMeter如何和Charles进行接口测试

目录 一、什么是接口测试&#xff1f; 二、接口测试的好处 三、接口测试如何开展 四、如何使用JMeter 总结&#xff1a; 什么是接口测试&#xff0c;接口测试到底如何开展&#xff0c;我相信任何一个软件测试人员都会有这样的疑问&#xff0c; 这里我以接口测试自动化平台…

7.Sentinel控制台 配置 nacos持久化

一、Sentinel 持久化机制 推送模式说明优点缺点原始模式API将规则推送至客户端并直接更新到内存中,扩展写数据源简单、无任何依赖不保证一致性;规则保存在内存中,重启不建议用于生产环境PULL模式客户端主动向某个规则管理中心定期轮询拉取规则,<br />这个规则中心可以…

Discovery Holdings 探索没有复杂性的多云机会

开发新的产品和服务&#xff0c;让客户 “惊叹”&#xff0c;是业界一个一直以来的的承诺&#xff0c;尤其是在一个快节奏的数字世界。提供金融服务的公司面临着敏捷的金融科技公司的威胁和不断变化的客户期望的持续压力。为了保持领先地位&#xff0c;他们需要提供价值、自助服…

【送书福利-第十二期】前沿技术、人工智能、集成电路科学与芯片技术、新一代信息与通信技术、网络空间安全技术,四大热点领域热书!

大家好&#xff0c;我是洲洲&#xff0c;欢迎关注&#xff0c;一个爱听周杰伦的程序员。关注公众号【程序员洲洲】即可获得10G学习资料、面试笔记、大厂独家学习体系路线等…还可以加入技术交流群欢迎大家在CSDN后台私信我&#xff01; 本文目录 一、前言二、书籍介绍1、《Web3…

【夜深人静学数据结构与算法 | 第三篇】 二叉树

目录 前言&#xff1a; 二叉树&#xff1a; 二叉树的种类&#xff1a; 二叉树的存储方式&#xff1a; 1. 链式存储 2. 数组存储 二叉树的遍历方式 深度优先遍历 广度优先遍历 总结&#xff1a; 前言&#xff1a; 本文将会详细的介绍各种常见的树以及相对应的概念&…

iTOP-RK3588 | Linux系统和应用开发手册

iTOP -RK3588开发板使用手册上新&#xff0c;后续资料会不断更新&#xff0c;不断完善&#xff0c;帮助用户快速入门&#xff0c;大大提升研发速度。 迅为RK3588开发板已经对Linux系统完成适配&#xff0c;同时新增了对应的文档教程辅助大家参考学习——《itop-3588开发板Linu…

戴着很舒服的蓝牙耳机推荐,佩戴舒适度高的蓝牙耳机分享

​无论是日常通勤还是运动健身&#xff0c;相信大多数朋友都喜欢一边在朝夕的奔波路上&#xff0c;或是休息锻炼的闲散时间中&#xff0c;一边听着好听的音乐营造一份轻松愉悦的氛围感来放松自己的心情。随着蓝牙耳机的增长和功能增加&#xff0c;很多用户找不到一款好用且适合…

从乐观到悲观:MySQL中不同类型的锁全面解析

大家好&#xff0c;我是你们的小米&#xff01;今天我要和大家分享关于MySQL的乐观锁和悲观锁&#xff0c;以及不同类型的锁。锁作为数据库中重要的概念之一&#xff0c;对于保证数据的一致性和并发性至关重要。现在就让我们一起来深入了解吧&#xff01; 为什么需要锁 在并发…

Android Compose UI实战练手----Google Bloom欢迎页

目录 1.概述2.效果图展示2.1 亮色主题效果&#xff1a;2.2 深色主题效果 3.项目结构解析3.1 颜色配置Color.kt3.2 形状配置Shape.kt3.3 主题配置Theme.kt3.4 字体配置 Type.kt 4.沉浸式状态栏适配5.UI界面分解及实现5.1 欢迎页背景内容5.2 欢迎页内容组件实现 5.3 欢迎页内容的…

自动化测试成熟度模型

目录 前言&#xff1a; 重新认识自动化测试 新手落地自动化测试 自动化测试成熟度模型 初级阶段-测试半自动化 中级阶段-回归测试自动化 高级阶段-大范围自动化测试 成熟阶段-自动化测试流水线 前言&#xff1a; 随着软件行业的快速发展&#xff0c;软件质量已经成为各…

chatgpt赋能python:Python如何绘制坐标轴

Python如何绘制坐标轴 在数据可视化中&#xff0c;坐标轴是一种非常常见的图形元素&#xff0c;其作用是让人们更好地理解和分析数据。在Python编程中&#xff0c;我们可以使用各种数据可视化库如Matplotlib和Seaborn来绘制坐标轴。本文将介绍如何使用Matplotlib库来绘制坐标轴…

17. 数据结构之图

前言 前面介绍了队列&#xff0c;栈等线性数据结构&#xff0c;二叉树&#xff0c;AVL树等非线性数据结构&#xff0c;本节&#xff0c;我们介绍一种新的非线性数据结构&#xff1a;图。图这种结构有很广泛的应用&#xff0c;比如社交网络&#xff0c;电子地图&#xff0c;多对…