让人头疼的时序数据预测,这个方案居然三步就搞定了?

news2024/11/15 21:06:32

时序数据预测

数字化时代,时序数据预测已经从一种理论研究转变为各行业实际运营中的关键工具,这种预测可以覆盖广泛的业务领域,比如:
利用历史销售数据进行未来销售趋势的预测
根据既往的电力消耗数据预估未来电力需求
基于过去的股市行情预测未来股价的走势

时序数据预测可以为企业提供强大的战略支持,有助于实现更精准的资源分配,提升经营效率,同时也能提高对未来变化的预见性,帮助企业更好地应对不确定性,因此越来越多的企业开始使用这个方法来推动自身的数字化进程。但是在实际操作中,往往会面临以下三个常见的挑战:
图片
▶ 数据预处理工作量多:时序数据往往包含大量的噪声、缺失值和异常值,对其进行清洗和预处理需要大量时间和精力。同时,如何处理季节性和趋势性等复杂特性,如何将原始的序列数据进行趋势的分解与融合,需要专业的技术和经验。
▶ 模型构建专业度高:传统的统计学方法在处理简单线性问题时效果良好,但在处理复杂、非线性的时序数据预测问题时表现较弱。而深度学习等先进的算法虽然能够提供更高的预测精度,但它们需要专业的编程和算法知识,限制了大部分用户的使用。
▶ 调度部署难度大:算法模型构建完毕后,如何将其部署到实际业务中,并进行有效的调度管理,往往需要繁复的代码工作,并对系统的稳定性和性能要求很高。
如何高效、智能地解决这些问题?美林数据打造的「时序数据预测一体化解决方案」也许能帮到你!
时序数据预测一体化解决方案
在时序数据预测的过程中,涉及到从数据预处理、模型构建到调度部署的全流程,这其中的每个环节都面临着繁琐且复杂的工作量,往往需要多个部门的配合。
美林数据提出的解决方案,通过Tempo智能化工具的支撑,将每个环节的准备工作都变得更加高效,对于业务人员来说,只需要简单的三步,就可以完成时序数据预测。
第一步、数据预处理
通过Tempo机器学习平台强大的数据预处理能力,用户只需要通过拖拉拽的方式,即可完成数据的清洗、填充、平滑、抽样等预处理工作。
时序是据预测

第二步、模型构建
Tempo机器学习平台内置了丰富的时序类算法,包括ARIMA、稀疏时间序列、X11、灰色预测、回声状态网络等,支持自动特征选择和参数调优,使得模型构建变得更为简单高效。
时序数据预测

第三步、调度部署
模型构建完毕后,Tempo调度编排能够帮助用户实现模型的部署和调度管理,支持多种部署方式,同时可以灵活地调整调度频率和顺序,满足不同业务的需求。
时序数据预测

目前「时序数据预测一体化解决方案」已经运用到燃气需气量预测、电网售电量预测、采煤机滚筒高度预测、分布式光伏出力预测、风机能效预测研究等领域,经过大量的实践与经验积累,准确率稳定在90%以上,逐步实现了机器换人,赋能传统制造企业实现智能制造的改革与升级。

小T总结
从高效运作的物流与供应链系统,到金融市场中的投资决策,再到能源领域的需求预测,高精度的时序数据预测在各行各业都发挥着至关重要的作用。
无论你是不懂代码的业务人员、专业的数据科学家,还是企业的决策者,美林数据的「时序数据预测一体化解决方案」都能帮助你轻松应对时序数据预测的挑战,实现数据驱动决策,赋能企业降本增效,从而推动企业的数字化进程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/642769.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

释放 OpenAI 和 ESP-BOX 的力量:ChatGPT 与乐鑫 SoC 融合指南

当前,我们正见证着一场技术革命,而 OpenAI 正处于这场变革的最前沿。其中最激动人心的创新之一就是ChatGPT,它运用自然语言处理的力量,打造出更加引人入胜、直观的用户体验。而将 OpenAI 的 API 与物联网设备相结合,更…

Spring Cloud Kubernetes配置使用详情

目录 一、 为什么你需要 Spring Cloud Kubernetes? 二、 Starter 三、 用于 Kubernetes 的 DiscoveryClient 四、Kubernetes 原生服务发现(service discovery) 五、Kubernetes PropertySource 的实现 1、使用 ConfigMap PropertySource …

Unreal Engine 5.1 AI行为树基础入门

ai行为树理解起来其实是npc根据自身一些情况进行一些逻辑执行,而这些逻辑是我们使用ai行为树去实现的。 ai行为树需要一个寻路网格体边界体积,在ue引擎中,体积Actor分为多种,寻路网格体边界体积只是其中的一种。 关于其它的体积&a…

leetcode:448. 找到所有数组中消失的数字(python3解法)

难度:简单 给你一个含 n 个整数的数组 nums ,其中 nums[i] 在区间 [1, n] 内。请你找出所有在 [1, n] 范围内但没有出现在 nums 中的数字,并以数组的形式返回结果。 示例 1: 输入:nums [4,3,2,7,8,2,3,1] 输出&…

初识网络之https的加密与解密

目录 一、https协议的概念 二、加密的概念 三、为什么需要加密 四、常见的加密方式 1. 对称加密 2. 非对称加密 五、数据摘要(数据指纹) 六、数据签名 七、加密方案 1. 方案一:只使用对称加密 2. 方案二:只使用非对称加…

院士大咖齐聚蓉城,论道“疑难眼眶病学术论坛”

“全国疑难眼眶病诊疗带教基地”成立,力促“病有所医 ” 大咖云集,这是一场眼科界领军人汇聚一堂,聚焦疑难眼眶病突破性学术成果及前沿技术的高规格论坛; 规模空前,这是一场围绕眼眶病诊疗技术议题深入探讨交流,为我国…

行为型设计模式08-职责链模式

🧑‍💻作者:猫十二懿 ❤️‍🔥账号:CSDN 、掘金 、个人博客 、Github 🎉公众号:猫十二懿 职责链模式 1、职责链模式介绍 责任链模式(Chain of Responsibility Pattern)…

seatunnel入门案例,集群模式

目录 安装部署 解压 环境变量 安装plugin 添加资源jar包 SEATUNNEL 配置文件 env:环境设置 source:数据源设置 sink:数据去向设置 transform: 数据转换设置 运行方式 seatunnel 引擎(zeta) 本地模式 集群模式 安装部署 解压 tar…

Centos7在Nginx中配置SSL证书

我的环境 阿里云轻量应用服务器(Linux, Centos7.9 x64) 一、申请免费SSL证书 一年可以创建20个 下载证书(我是Nginx服务器) 下载到本地后,打开有两个文件: 二、将SSL证书文件上传至服务器 通过WinScp拖…

图像sensor的特性和驱动解析

1、更换OV9712并且做配置更改和测试 1.1、更改配置脚本 修改Hi3518E_SDK_V1.0.3.0\package\mpp\sample\Makefile.param 1.2、测试运行 运行官方SDK sample的测试版本(打包到本地) 运行ORTP传输的测试版本(RTP实时预览) 1.3、更…

如何高效合理规划每天的工作?

如何高效合理规划每天的工作? 〇、基本原则 梳理工作,明确目标。(SMART法则)轻重缓急,排优先级。(四象限管理法则)要事第一,尽管去做。(GTD 理论)限时deadl…

新买的电脑怎么用U盘重装系统?新买的电脑用U盘重装系统教程

新买的电脑怎么用U盘重装系统?用户新买了电脑,想知道怎么用U盘来重装新买的电脑,用U盘来重装电脑其实非常简单,用户需要准备一个U盘,然后完成U盘启动盘的安装,接着按照以下分享的新买的电脑用U盘重装系统教…

[Hadoop安装配置 ]

目录 前言: 执行步骤: 1 创建好目录文件,上传Hadoop版本压缩包,一般都是tar.gz 结尾包 1.1这里压缩包可以直接拖拽到指定虚拟机目录下, 例如xshell连接指定虚拟机, 然后可以拖拽,如果拖拽不了,那就需要设置一下配置, 或者 使用 xftp工具 连接xshell 然后上传文件 2 解压…

pandas---数据合并(concat、append、merge)

1. concat函数 pd.concat([data1, data2], axis1) 按照行或列进行合并,axis0为列索引,axis1为行索引。 df1 make_df([1, 2], [A, B]) df2 make_df([3, 4], [A, B]) display(df1, df2) # 默认上下合并,垂直合并 pd.concat([df1, df2]) …

【机器学习】——学习的基本分类:算法模拟的根本出发点!

目录 引入 一、分类 1、基于学习策略的分类 2、基于所获取知识的表示形式分类 3、按应用领域分类 4、综合分类 二、研究领域 引入 机器学习是继专家系统后人工智能的又一重要研究领域!机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新…

前端面试经验技巧分享

👩 个人主页:不爱吃糖的程序媛 🙋‍♂️ 作者简介:前端领域新星创作者、CSDN内容合伙人,专注于前端各领域技术,成长的路上共同学习共同进步,一起加油呀! ✨系列专栏:前端…

NVIDIA的StyleGAN、StyleGAN2、StyleGAN3系列论文解读,梳理基于风格的生成器架构

通俗来讲就是,张三造假币(Generator生成器),然后用验钞机去验证真假(Discriminator辨别器),如果是假的就继续提高造假技术,直到验钞机检验不出来为止,也就是说一个造假一个验假(验钞机也需升级),两者互相学…

Redis集群部署

Redis集群部署 1.单机安装Redis2.Redis主从集群2.1.集群结构2.2.准备实例和配置2.3.启动2.4.开启主从关系2.5.测试 3.搭建哨兵集群3.1.集群结构3.2.准备实例和配置3.3.启动3.4.测试 4.搭建分片集群4.1.集群结构4.2.准备实例和配置4.3.启动4.4.创建集群4.5.测试4.5.测试 本章是基…

安全 --- 内网基础知识(01)

内网基础知识 (1)概念 内网也称局域网(Local Area Network,LAN)是指在某一工作区域内由多台计算机互联形成的计算机组,一般是方圆几千米内。局域网可实现文件管理、应用软件共享、打印机共享、工作内的历…

新一代绿色智慧数据中心电气规划设计与常识(一)

绿色智慧数据中心 随着大数据、云计算、人工智能、区块链、ChatGPT等技术加速创新,数字文化产业发展动力强劲,不断解锁新兴业态。近年来,各级政府重要会议中也多次强调“新基建”今后一段时期驱动新一轮产业革命的战略性新兴产业&#xff0c…