【C++】——栈和队列(stack、queue)及优先队列(priority_queue)的介绍和模拟实现

news2024/11/17 9:49:57

文章目录

  • 1. 前言
  • 2. 容器适配器
    • 2.1 容器适配器的介绍
    • 2.2 STL标准库中stack和queue的底层结构
    • 2.3 deque的简单介绍
    • 2.4 deque的缺陷
    • 2.5 为什么选择deque作为stack和queue的底层默认容器
  • 3. stack
    • 3.1 stack的介绍
    • 3.2 stack的使用
    • 3.3 stack模拟实现
  • 4. queue
    • 4.1 queue的介绍
    • 4.2 queue的使用
    • 4.3 queue模拟实现
  • 5. priority_queue(优先队列)
    • 5.1 优先队列的介绍
    • 5.2 优先队列的使用
    • 5.3 优先队列模拟实现
  • 6. 结尾

1. 前言

今天我们来学习C++stl六大组件的其中一种,容器适配器,stack、queue及priority_queue都是容器适配器。我们循序渐进,接下来让我们先认识一下什么是容器适配器。

2. 容器适配器

2.1 容器适配器的介绍

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。

2.2 STL标准库中stack和queue的底层结构

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque。比如:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2.3 deque的简单介绍

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂。

2.4 deque的缺陷

与vector比较:
deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。
与list比较:
其底层是连续空间,空间利用率比较高,不需要存储额外字段。
但是,deque有一个致命缺陷:
不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。

2.5 为什么选择deque作为stack和queue的底层默认容器

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:
1.stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
2.在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长
时,deque不仅效率高,而且内存使用率高。

3. stack

3.1 stack的介绍

1.stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。
2.stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出。
3.stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下操作:
empty:判空操作
back:获取尾部元素操作
push_back:尾部插入元素操作
pop_back:尾部删除元素操作
4.标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器,默认情况下使用deque。

3.2 stack的使用

函数名称功能说明
stack()构造空的栈
empty()检测stack是否为空
size()返回stack中元素的个数
top()返回栈顶元素的引用
push()将元素val压入stack中
pop()将stack中尾部的元素弹出
void Test1()
{
	//fiora::stack<int,vector<int>> st;
	//fiora::stack<int, list<int>> st;
	//fiora::stack<int> st;
	//stack<int,vector<int>> st;
	//stack<int, list<int>> st;
	stack<int> st;
	st.push(1);
	st.push(2);
	st.push(3);
	st.push(4);
	st.push(5);

	while (!st.empty())
	{
		cout << st.top() << " ";
		st.pop();
	}
}

在这里插入图片描述

3.3 stack模拟实现

namespace fiora
{
	template<class T, class Container = deque<T>>
	class stack
	{
	public:
		void push(const T& x)
		{
			_con.push_back(x);
		}

		void pop()
		{
			_con.pop_back();
		}

		T& top()
		{
			return _con.back();
		}

		const T& top() const
		{
			return _con.back();
		}

		bool empty() const
		{
			return _con.empty();
		}

		size_t size() const
		{
			return _con.size();
		}


	private:
		Container _con;
	};
}

测试:

void Test1()
{
	//fiora::stack<int,vector<int>> st;
	fiora::stack<int, list<int>> st1;
	fiora::stack<int> st;
	//stack<int,vector<int>> st;
	//stack<int, list<int>> st;
	//stack<int> st;
	st.push(1);
	st.push(2);
	st.push(3);
	st.push(4);
	st.push(5);

	while (!st.empty())
	{
		cout << st.top() << " ";
		st.pop();
	}

}

在这里插入图片描述

4. queue

4.1 queue的介绍

1.队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端提取元素。
2.队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从队尾入队列,从队头出队列。
3.底层容器可以是标准容器类模板之一,也可以是其他专门设计的容器类。该底层容器应至少支持以下操作:
empty:检测队列是否为空
size:返回队列中有效元素的个数
front:返回队头元素的引用
back:返回队尾元素的引用
push_back:在队列尾部入队列
pop_front:在队列头部出队列
4.标准容器类deque和list满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标准容器deque。

4.2 queue的使用

函数名称功能说明
queue()构造空的队列
empty()检测队列是否为空
size()返回队列中有效元素的个数
front()返回队头元素的引用
back()返回队尾元素的引用
push()在队尾将元素val入队
pop()将队头元素出队
void Test2()
{
	//fiora::queue<int> q;
	//fiora::queue<int, list<int>> q;
	//fiora::queue<int, vector<int>> q;错误,vector不支持头删
	queue<int> q;
	//queue<int, list<int>> q;
	//queue<int, vector<int>> q;错误,vector不支持头删
	q.push(1);
	q.push(2);
	q.push(3);
	q.push(4);
	q.push(5);

	while (!q.empty())
	{
		cout << q.front() << " ";
		q.pop();
	}
}

在这里插入图片描述

4.3 queue模拟实现

namespace fiora
{
	template<class T, class Container = deque<T>>
	class queue
	{
	public:
		void push(const T& x)
		{
			_con.push_back(x);
		}

		void pop()
		{
			_con.pop_front();
		}

		T& back()
		{
			return _con.back();
		}

		T& front()
		{
			return _con.front();
		}

		const T& back() const
		{
			return _con.back();
		}

		const T& front() const
		{
			return _con.front();
		}


		bool empty() const
		{
			return _con.empty();
		}

		size_t size() const
		{
			return _con.size();
		}

	private:
		Container _con;
	};
}

测试:

void Test2()
{
	fiora::queue<int> q;
	fiora::queue<int, list<int>> q1;
	//fiora::queue<int, vector<int>> q;错误,vector不支持头删
	//queue<int> q;
	//queue<int, list<int>> q;
	//queue<int, vector<int>> q;错误,vector不支持头删
	q.push(1);
	q.push(2);
	q.push(3);
	q.push(4);
	q.push(5);

	while (!q.empty())
	{
		cout << q.front() << " ";
		q.pop();
	}
}

在这里插入图片描述

5. priority_queue(优先队列)

5.1 优先队列的介绍

优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆。

1.优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。
2.此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。
3.优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
4.底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
empty():检测容器是否为空
size():返回容器中有效元素个数
front():返回容器中第一个元素的引用
push_back():在容器尾部插入元素
pop_back():删除容器尾部元素
5.标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector。
6.需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。

5.2 优先队列的使用

函数名称功能说明
priority_queue()/priority_queue(first,last)构造空的优先队列
empty()检测优先队列是否为空
top()返回优先级队列中最大(最小元素),即堆顶元素
push()在优先级队列中插入元素val
pop()删除优先级队列中最大(最小)元素,即堆顶元素
void Test3()
{
	priority_queue<int> pq;
	//fiora::priority_queue<int> pq;

	pq.push(3);
	pq.push(1);
	pq.push(2);
	pq.push(5);
	pq.push(1);
	pq.push(4);
	pq.push(0);

	while (!pq.empty())
	{
		cout << pq.top() << " ";
		pq.pop();
	}
	cout << endl;
}

在这里插入图片描述

void Test4()
{
int a[] = { 5,4,6,9,1,2,3,0,8,7 };
	//fiora::priority_queue<int> heap(a, a + sizeof(a) / sizeof(int));
	//fiora::priority_queue<int> heap(a, a + sizeof(a) / sizeof(int));
	//fiora::priority_queue<int, vector<int>, greater<int>> heap(a, a + sizeof(a) / sizeof(int));
	priority_queue<int, vector<int>, greater<int>> heap(a, a + sizeof(a) / sizeof(int));

	while (!heap.empty())
	{
		cout << heap.top() << " ";
		heap.pop();
	}	
	cout << endl;
}

在这里插入图片描述

5.3 优先队列模拟实现

namespace fiora
{
	//大堆
	template<class T, class Container = vector<T>, class Compare = less<T>>
	class priority_queue
	{
	public:

		priority_queue()
		{}

		template<class InputIterator>
		priority_queue(InputIterator first, InputIterator last)
		{
			while (first != last)
			{
				_con.push_back(*first);
				first++;
			}

			//建堆
			for (int i = (_con.size() - 1 - 1) / 2; i >= 0; i--)
			{
				adjust_down(i);
			}

		}


		void adjust_up(size_t child)
		{
			Compare com;
			size_t parent = (child - 1) / 2;
			while (child > 0)
			{
				if (com(_con[parent], _con[child]))
				{
					std::swap(_con[child], _con[parent]);
					child = parent;
					parent = (child - 1) / 2;
				}
				else
				{
					break;
				}
			}
		}

		void adjust_down(size_t parent)
		{
			Compare com;
			size_t child = parent * 2 + 1;
			while (child < _con.size())
			{
				if (child + 1 < _con.size() && com(_con[child], _con[child + 1]))
				{
					child++;
				}

				if (com(_con[parent], _con[child]))
				{
					std::swap(_con[child], _con[parent]);
					parent = child;
					child = parent * 2 + 1;
				}
				else
				{
					break;
				}
			}
		}

		void push(const T& x)
		{
			_con.push_back(x);
			adjust_up(_con.size() - 1);
		}

		void pop()
		{
			std::swap(_con[0], _con[_con.size() - 1]);
			_con.pop_back();
			adjust_down(0);
		}

		const T& top()
		{
			return _con[0];
		}

		bool empty() const
		{
			return _con.empty();
		}

		size_t size() const
		{
			return _con.size();
		}


	private:
		Container _con;
	};
}

测试:

void Test3()
{
	//priority_queue<int> pq;
	fiora::priority_queue<int> pq;
	
	pq.push(3);
	pq.push(1);
	pq.push(2);
	pq.push(5);
	pq.push(1);
	pq.push(4);
	pq.push(0);

	while (!pq.empty())
	{
		cout << pq.top() << " ";
		pq.pop();
	}
	cout << endl;


	int a[] = { 5,4,6,9,1,2,3,0,8,7 };
	//fiora::priority_queue<int> heap(a, a + sizeof(a) / sizeof(int));
	fiora::priority_queue<int> heap1(a, a + sizeof(a) / sizeof(int));
	fiora::priority_queue<int, vector<int>, greater<int>> heap(a, a + sizeof(a) / sizeof(int));
	//priority_queue<int, vector<int>, greater<int>> heap(a, a + sizeof(a) / sizeof(int));

	while (!heap.empty())
	{
		cout << heap.top() << " ";
		heap.pop();
	}
	
	cout << endl;
}

在这里插入图片描述

6. 结尾

关于栈和队列的学习我们就告一段落了,栈和队列和之前学习的容器一样,使用方法都非常简单,最重要的是要能够理解它们的底层原理,以便灵活使用。
最后,感谢各位大佬的耐心阅读和支持,觉得本篇文章写的不错的朋友可以三连关注支持一波,如果有什么问题或者本文有错误的地方大家可以私信我,也可以在评论区留言讨论,再次感谢各位。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/634484.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据分布——长尾分布的处理

前言 长尾分布在分类任务中会提到这个名,这是因为长尾分布这个现象问题会导致在训练过程中会出现出错率高的问题&#xff0c;影响了实验结果。 这里要说的是&#xff0c;长尾分布是一种现象&#xff0c;有的地方说是一种理论或定律&#xff0c;我感觉这样说不太确切&#xff0…

取石子游戏——算法与编程

取石子游戏 目录 问题描述输入输出格式输入格式&#xff1a;输出格式&#xff1a; 输入输出样例输入样例#1&#xff1a;输出样例#1&#xff1a;提示信息 算法尼姆博奕 代码 问题描述 A l i c e Alice Alice和 B o b Bob Bob在玩取石子游戏&#xff0c;摆在他们面前的有 n n n堆…

GIS入门进阶之012

一、引言 空间数据可视化是有效传输与表达地理信息&#xff0c;挖掘空间数据之间的内在联系&#xff0c;揭示地理现象内在规律的重要手段。它通过运用地图学、计算机图形学和图像处理技术&#xff0c;将地学信息的输入、处理、查询、分析与预测的结果采用符号、图形、图像并结合…

OpenGL 材质实现

1.简介 在现实世界里&#xff0c;每个物体会对光产生不同的反应。比如&#xff0c;钢制物体看起来通常会比陶土花瓶更闪闪发光&#xff0c;一个木头箱子也不会与一个钢制箱子反射同样程度的光。有些物体反射光的时候不会有太多的散射&#xff0c;因而产生较小的高光点&#xf…

35岁被淘汰?软件测试工程师职业生涯规划,从技术到管理...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 入门阶段&#xf…

Parallel Desktop中按照的centos在切换root用户时,密码正确,但一直切换不成功,显示su: Authentication failure

目录 一、出现问题二、分析问题三、解决问题四、参考资料 一、出现问题 我的密码明明是输入正确的&#xff0c;但又一直给我报下面的错误 二、分析问题 我怀疑是我密码记错了&#xff0c;所以我点击Log Out&#xff0c;重新去输入了一下密码&#xff0c;发现是正确的我确认…

[学习笔记] [机器学习] 9. 朴素贝叶斯(概率基础、联合概率、条件概率、贝叶斯公式、情感分析)

视频链接数据集下载地址&#xff1a;无需下载 学习目标&#xff1a; 4. 说明条件概率与联合概率 5. 说明贝叶斯公式、以及特征独立的关系 6. 记忆贝叶斯公式 7. 知道拉普拉斯平滑系数 8. 应用贝叶斯公式实现概率的计算 9. 会使用朴素贝叶斯对商品评论进行情感分析 1. 朴素贝叶…

对象进阶-继承、原型-原型链

工厂方法创建对象 我们之前已经学习了如何创建一个对象&#xff0c;那我们要是想要创建多个对象又该怎么办&#xff1f;聪明的同学可能会说&#xff0c;直接在写几个对象不就好了吗&#xff1f;比如下边的代码&#xff1a; var person1 {name: "孙悟空",age: 18,s…

APP自动化测试,Appium+PO模式+Pytest框架实战—项目案例

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 PO模式&#xff1…

如何解决GEE导出影像的Nodata值在ArcGIS中无法正常显示?

目录 01 ArcGIS对于GEE掩膜影像的Nodata值的说明 02 处理方法 2.1 方法1-GEE修改掩膜值 Arguments: Returns: Image 2.2 方法2-ArcGIS重新赋值Nodata&#xff08;推荐&#xff09; 01 ArcGIS对于GEE掩膜影像的Nodata值的说明 当在GEE中进行掩膜后&#xff0c;将影像在Ar…

打造极简风格动效 —— 5 分钟轻松实现惊艳、震撼人心的视觉效果

前期回顾 是不是在为 API 烦恼 &#xff1f;好用免费的api接口大全呼之欲出_免流接口api_彩色之外的博客-CSDN博客APi、常用框架、UI、文档—— 整理合并https://blog.csdn.net/m0_57904695/article/details/130459417?spm1001.2014.3001.5501 &#x1f44d; 本文专栏&…

20道嵌入式经典面试题(附答案)

1.嵌入式系统中经常要用到无限循环&#xff0c;如何用C编写死循环 答&#xff1a;while(1){} 或者 for(;;) 2.程序的局部变量存在于哪里&#xff0c;全局变量存在于哪里&#xff0c;动态申请数据存在于哪里。 答&#xff1a;程序的局部变量存在于栈区&#xff1b;全局变量存在…

【Linux】浅谈文件原理与操作

目录 问题引入 浅谈文件原理 文件操作 文件的打开与关闭 open close write与read 再谈C库文件操作 问题引入 &#x1f338;以前我们学过C语言的文件操作&#xff0c;而不同语言的文件操作都是不一样的&#xff0c;我们该如何理解这一现象&#xff0c;能不能用一种统一…

有关 string 类的练习(下)

目录 一、反转字符串 II 二、反转字符串中的单词 III 三、找出字符串中第一个只出现一次的字符 四、字符串相乘 五、把字符串转换成整数 一、反转字符串 II 给定一个字符串 s 和一个整数 k&#xff0c;从字符串开头算起&#xff0c;每计数至 2k 个字符&#xff0c;就反转…

Spring,注解开发

Spring是一个轻量级的控制反转&#xff08;IOC&#xff09;和面向切面编程&#xff08;AOP&#xff09;的框架 1、组成 spring七大模块详解 2、IOC理论推导 传统的开发 (pojo层、DAO层和业务层&#xff09; &#xff08;1&#xff09;UserDao &#xff08;2) UserDaoImpl (3)…

天狼星-大熊座 Ursa Major SIRIUS

大熊座 Ursa Major SIRIUS 键盘说明 客制化键盘&#xff1a; 大熊座 Ursa Major SIRIUS 配列&#xff1a; 75 键帽&#xff1a;KCA-HelloWorld-Black 双模&#xff1a; 蓝牙-分裂方案 驱动配置&#xff1a;Link Lab 驱动设置软件 键盘操作 键盘说明参考&#xff1a;键位配…

利用WinDbg查看堆栈中方法入参的值4(C#)

由于作者水平有限&#xff0c;如有写得不对的地方&#xff0c;请指正。 使用WinDbg的过程中&#xff0c;坑特别的多&#xff0c;对版本要求比较严格&#xff0c;如&#xff1a; 1 32位应用程序导出的Dump文件要用32位的WinDbg打开&#xff0c;想要没有那么多的问题&#xf…

海底光缆位置探测技术的应用概述

1. 概述 海底光缆运行在地质环境复杂的海洋环境中&#xff0c;地震、海床塌陷、滑坡、洋流变化、海洋生物及船只抛锚都有可能造成光缆断裂、破损&#xff0c;影响光缆的安全运行。海底光缆一旦遭受损坏&#xff0c;其造成的经济损失无法估量。因此在海洋开发工程实施前&#xf…

Web转化为APP——YonBIP(APICloud迁移版)

目录 平台注册 平台使用 设计封面&#xff08;端设置&#xff09; APP证书 代码上传 移动打包 运营管理和移动插件 众所周知&#xff0c;APP开发是一件非常麻烦的事&#xff0c;很多擅长Web开发的人未必擅长APP开发。那么作为一个Web开发者&#xff0c;可不可以有很方便…

基于prefix tuning + Bert的标题党分类器

文章目录 背景一、Prefix-Tuning介绍二、分类三、效果四、参阅 背景 近期, CSDN博客推荐流的标题党博客又多了起来, 先前的基于TextCNN版本的分类模型在语义理解上能力有限, 于是, 便使用的更大的模型来优化, 最终准确率达到了93.7%, 还不错吧. 一、Prefix-Tuning介绍 传统的…