我们常见的图像位深一般是8bit,颜色范围[0, 255],称为标准动态范围SDR(Standard Dynamic Range)。SDR的颜色值有限,如果要图像色彩更鲜艳,那么就需要10bit,甚至12bit,称为高动态范围HDR(High Dynamic Range)。OpenCV有提供SDR转HDR的方法,而逆转换是通过Tone mapping实现。
我们先看下SDR与HDR图像的对比,如下图所示:
一、核心函数
在OpenCV的photo模块提供SDR与HDR互转,还有图像曝光融合。
1、SDR转HDR
HDR算法需要CRF摄像头响应函数,计算CRF示例代码如下:
Mat image;
Mat response;
vector<float> times;
Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec();
calibrate->process(image, response, times);
得到CRF响应函数后,使用MergeDebevec函数来转换HDR图像,C++代码:
Mat hdr;
Ptr<MergeDebevec> merge_debevec = createMergeDebevec();
merge_debevec->process(image, hdr, times, response);
java版本代码:
Mat hdr = new Mat();
MergeDebevec mergeDebevec = Photo.createMergeDebevec();
mergeDebevec.process(image, hdr, matTime);
python版本代码:
merge_debevec = cv.createMergeDebevec()
hdr = merge_debevec.process(image, time, response)
2、HDR转SDR
HDR逆转SDR是通过Tonemap函数实现,其中2.2为Gamma矫正系数,C++代码如下:
Mat sdr;
float gamma = 2.2f;
Ptr<Tonemap> tonemap = createTonemap(gamma);
tonemap->process(hdr, sdr);
java版本代码:
Mat ldr = new Mat();
Tonemap tonemap = Photo.createTonemap(2.2f);
tonemap.process(hdr, ldr);
python版本代码:
tonemap = cv.createTonemap(2.2)
ldr = tonemap.process(hdr)
3、图像曝光
在OpenCV中,使用MergeMertens进行图像的曝光融合,C++代码:
Mat exposure;
Ptr<MergeMertens> merge_mertens = createMergeMertens();
merge_mertens->process(image, exposure);
java版本代码:
Mat exposure = new Mat();
MergeMertens mergeMertens = Photo.createMergeMertens();
mergeMertens.process(image, exposure);
python版本代码:
merge_mertens = cv.createMergeMertens()
exposure = merge_mertens.process(image)
二、实现代码
1、SDR转HDR源码
HDR图像转换的源码位于opencv/modules/photo/src/merge.cpp,首先是createMergeDebevec函数使用makePtr智能指针包裹:
Ptr<MergeDebevec> createMergeDebevec()
{
return makePtr<MergeDebevecImpl>();
}
核心代码在于MergeDebevecImpl类的process(),具体如下:
class MergeDebevecImpl CV_FINAL : public MergeDebevec
{
public:
MergeDebevecImpl() :
name("MergeDebevec"),
weights(triangleWeights())
{}
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times, InputArray input_response) CV_OVERRIDE
{
CV_INSTRUMENT_REGION();
std::vector<Mat> images;
src.getMatVector(images);
Mat times = _times.getMat();
CV_Assert(images.size() == times.total());
checkImageDimensions(images);
CV_Assert(images[0].depth() == CV_8U);
int channels = images[0].channels();
Size size = images[0].size();
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
dst.create(images[0].size(), CV_32FCC);
Mat result = dst.getMat();
Mat response = input_response.getMat();
if(response.empty()) {
response = linearResponse(channels);
response.at<Vec3f>(0) = response.at<Vec3f>(1);
}
Mat log_response;
log(response, log_response);
CV_Assert(log_response.rows == LDR_SIZE && log_response.cols == 1 &&
log_response.channels() == channels);
Mat exp_values(times.clone());
log(exp_values, exp_values);
result = Mat::zeros(size, CV_32FCC);
std::vector<Mat> result_split;
split(result, result_split);
Mat weight_sum = Mat::zeros(size, CV_32F);
// 图像加权平均
for(size_t i = 0; i < images.size(); i++) {
std::vector<Mat> splitted;
split(images[i], splitted);
Mat w = Mat::zeros(size, CV_32F);
for(int c = 0; c < channels; c++) {
LUT(splitted[c], weights, splitted[c]);
w += splitted[c];
}
w /= channels;
Mat response_img;
LUT(images[i], log_response, response_img);
split(response_img, splitted);
for(int c = 0; c < channels; c++) {
result_split[c] += w.mul(splitted[c] - exp_values.at<float>((int)i));
}
weight_sum += w;
}
weight_sum = 1.0f / weight_sum;
for(int c = 0; c < channels; c++) {
result_split[c] = result_split[c].mul(weight_sum);
}
// 融合
merge(result_split, result);
// 求对数
exp(result, result);
}
protected:
String name;
Mat weights;
};
这里MergeDebevecImpl继承MergeDebevec父类,最终是继承Algorithm抽象类,位于photo.hpp:
class CV_EXPORTS_W MergeExposures : public Algorithm
{
public:
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
InputArray times, InputArray response) = 0;
};
class CV_EXPORTS_W MergeDebevec : public MergeExposures
{
public:
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
InputArray times, InputArray response) CV_OVERRIDE = 0;
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0;
};
2、HDR转SDR源码
前面我们有谈到,HDR转SDR是通过ToneMapping色调映射实现。位于photo模块的tonemap.cpp,入口是createTonemap(),也是使用智能指针包裹:
Ptr<Tonemap> createTonemap(float gamma)
{
return makePtr<TonemapImpl>(gamma);
}
接着我们继续看TonemapImpl核心代码:
class TonemapImpl CV_FINAL : public Tonemap
{
public:
TonemapImpl(float _gamma) : name("Tonemap"), gamma(_gamma)
{}
void process(InputArray _src, OutputArray _dst) CV_OVERRIDE
{
Mat src = _src.getMat();
Mat dst = _dst.getMat();
double min, max;
// 获取图像像素最小值与最大值
minMaxLoc(src, &min, &max);
if(max - min > DBL_EPSILON) {
dst = (src - min) / (max - min);
} else {
src.copyTo(dst);
}
// 幂运算,指数为gamma的倒数
pow(dst, 1.0f / gamma, dst);
}
......
protected:
String name;
float gamma;
};
同时还提供Drago、Reinhard、Mantiuk算法进行色调映射,大家感兴趣可以去阅读源码。
3、图像曝光源码
图像曝光的源码同样位于merge.cpp,入口是createMergeMertens(),同样使用智能指针包裹:
Ptr<MergeMertens> createMergeMertens(float wcon, float wsat, float wexp)
{
return makePtr<MergeMertensImpl>(wcon, wsat, wexp);
}
核心源码在MergeMertensImpl类:
class MergeMertensImpl CV_FINAL : public MergeMertens
{
public:
MergeMertensImpl(float _wcon, float _wsat, float _wexp) :
name("MergeMertens"),
wcon(_wcon),
wsat(_wsat),
wexp(_wexp)
{}
void process(InputArrayOfArrays src, OutputArray dst) CV_OVERRIDE
{
......
parallel_for_(Range(0, static_cast<int>(images.size())), [&](const Range& range) {
for(int i = range.start; i < range.end; i++) {
Mat img, gray, contrast, saturation, wellexp;
std::vector<Mat> splitted(channels);
images[i].convertTo(img, CV_32F, 1.0f/255.0f);
if(channels == 3) {
cvtColor(img, gray, COLOR_RGB2GRAY);
} else {
img.copyTo(gray);
}
images[i] = img;
// 通道分离
split(img, splitted);
// 计算对比度:拉普拉斯变换
Laplacian(gray, contrast, CV_32F);
contrast = abs(contrast);
// 通道求均值
Mat mean = Mat::zeros(size, CV_32F);
for(int c = 0; c < channels; c++) {
mean += splitted[c];
}
mean /= channels;
// 计算饱和度
saturation = Mat::zeros(size, CV_32F);
for(int c = 0; c < channels; c++) {
Mat deviation = splitted[c] - mean;
pow(deviation, 2.0f, deviation);
saturation += deviation;
}
sqrt(saturation, saturation);
// 计算曝光量
wellexp = Mat::ones(size, CV_32F);
for(int c = 0; c < channels; c++) {
Mat expo = splitted[c] - 0.5f;
pow(expo, 2.0f, expo);
expo = -expo / 0.08f;
exp(expo, expo);
wellexp = wellexp.mul(expo);
}
pow(contrast, wcon, contrast);
pow(saturation, wsat, saturation);
pow(wellexp, wexp, wellexp);
weights[i] = contrast;
if(channels == 3) {
weights[i] = weights[i].mul(saturation);
}
weights[i] = weights[i].mul(wellexp) + 1e-12f;
AutoLock lock(weight_sum_mutex);
weight_sum += weights[i];
}
});
int maxlevel = static_cast<int>(logf(static_cast<float>(min(size.width, size.height))) / logf(2.0f));
std::vector<Mat> res_pyr(maxlevel + 1);
std::vector<Mutex> res_pyr_mutexes(maxlevel + 1);
parallel_for_(Range(0, static_cast<int>(images.size())), [&](const Range& range) {
for(int i = range.start; i < range.end; i++) {
weights[i] /= weight_sum;
std::vector<Mat> img_pyr, weight_pyr;
// 分别构建image、weight图像金字塔
buildPyramid(images[i], img_pyr, maxlevel);
buildPyramid(weights[i], weight_pyr, maxlevel);
for(int lvl = 0; lvl < maxlevel; lvl++) {
Mat up;
pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size());
img_pyr[lvl] -= up;
}
for(int lvl = 0; lvl <= maxlevel; lvl++) {
std::vector<Mat> splitted(channels);
// 通道分离,然后与weight权重相乘
split(img_pyr[lvl], splitted);
for(int c = 0; c < channels; c++) {
splitted[c] = splitted[c].mul(weight_pyr[lvl]);
}
// 图像融合
merge(splitted, img_pyr[lvl]);
AutoLock lock(res_pyr_mutexes[lvl]);
if(res_pyr[lvl].empty()) {
res_pyr[lvl] = img_pyr[lvl];
} else {
res_pyr[lvl] += img_pyr[lvl];
}
}
}
});
for(int lvl = maxlevel; lvl > 0; lvl--) {
Mat up;
pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size());
res_pyr[lvl - 1] += up;
}
dst.create(size, CV_32FCC);
res_pyr[0].copyTo(dst);
}
......
protected:
String name;
float wcon, wsat, wexp;
};