【Linux】按键驱动程序

news2024/11/19 18:21:26

【Linux】按键驱动程序

前言:

一、按键驱动程序的背景知识

1.1 查询方式

1.2 休眠-唤醒方式

1.3 poll方式

1.4 异步通知 

1.5 总结 

二、按键驱动程序的框架

三、按键驱动程序实战

3.1 头文件(button_drv.h)

3.2 驱动程序(button_drv.c)

3.3 驱动程序(button_100ask_imx6ull.c)

3.4 Makefile文件

3.5 应用程序(button_test.c)

3.6 运行测试

3.6.1 首先编译内核(如果没编译过)

3.6.2 设置交叉编译工具链(Ubuntu)

3.6.3 编译(Ubuntu)

3.6.4 上机测试(开发板)


前言:

按键驱动程序--通过读取按键值,执行某些任务。实现过程中可以深刻的认识到驱动的基本技能:中断、休眠、唤醒、poll等机制。

APP读取按键有四种方式,查询方式、休眠-唤醒方式、poll方式以及异步通知方式。这些方式相对应的驱动程序如何编写?是本文探究的地方。(韦老师课程)

一、按键驱动程序的背景知识

APP读取按键有四种方式,查询方式、休眠-唤醒方式、poll方式以及异步通知方式。后面三种方法都涉及到中断服务程序。中断在按键驱动程序中是核心,其更是在单片机还是在Linux中也非常重要。 

1.1 查询方式

        相较于LED最简驱动程序,这里没有大的区别,驱动程序中构造、注册一个file_operations结构体,里面提供有对应的open、read函数。APP调用open时,相应调用驱动程序里的drv_open函数,配置GPIO引脚为输入引脚。APP调用read时,相应调用驱动程序里的drv_read函数,读取寄存器,把引脚状态返回给APP。

1.2 休眠-唤醒方式

        休眠-唤醒的方式相较于查询方式,需要调用中断服务程序,drv_open里还需要注册按键中断服务程序,drv_read里则是分为两种情况,有按键数据时,直接返回,没有数据时,休眠。

        当用户按下按键时,GPIO中断触发,相应驱动程序之前注册的中断服务程序调用执行,记录按键数据,并唤醒休眠中的APP。

        APP唤醒后继续在内核态运行,执行驱动代码,把按键数据返回到用户空间。

1.3 poll方式

        上面的休眠-唤醒方式,有一个缺陷,如果用户一直操作按键,那么APP就会永远休眠。我们可以定一个闹钟,到时唤醒---poll方式。

        APP调用poll/select函数,意图是“查询”是否有数据,函数可以指定一个超时时间,即在这段时间内没有数据,就返回错误。这里会调用驱动程序里的drv_poll。

        这里APP唤醒就有两种方式,用户按下按键以及超时。被唤醒的APP在内核态继续运行,把“状态”返回给APP(用户空间)。

        APP得到poll/select函数的返回结果后,如果确认有数据,则再调用read函数,相应调用驱动程序中的drv_read函数,驱动程序中有数据,会直接返回数据。

1.4 异步通知 

        异步通知的实现原理是:内核给APP发信号。信号有很多中,这里常用的是SIGIO。

        驱动程序中构造、注册一个file_operations结构体,里面提供有对应的open、read、fasync函数。

  •  APP调用open时,导致驱动中对应的open函数被调用,在里面配置GPIO为输入引脚,并注册GPIO的中断处理函数。
  • APP给信号SIGIO注册自己的处理函数:my_signal_fun
  •  APP调用fcntl函数,将驱动程序的flag改为FASYNC,对应调用驱动程序的drv_fasync---记录进程PID
  • 当用户按下按键时,GPIO中断被触发,执行中断服务程序(记录按键数据,给进程PID发送SIGIO信号)
  • APP收到信号后会被打断,先执行信号处理函数。信号处理函数中可以调用read函数读取按键值
  • 信号处理函数返回后,APP会继续执行原先被打断的代码。

1.5 总结 

        我们实现的驱动程序应该要实现上述的四种方式,不限制APP使用哪种方法。

        驱动程序提供能力,不提供策略。APP想用哪种方法都可以,驱动程序都可以提供,驱动程序不限制你使用哪种方法。

二、按键驱动程序的框架

这里以分层的思想构建驱动框架。驱动程序的简单框架,参照文章:http://t.csdn.cn/NVv3I

        目的写出一个容易扩展到各种芯片、各种板子的按键驱动程序,这里分为上下两层:

  • ①button_drv.c分配/设置/注册file_operations结构体 
    • 向上提供button_open、button_read供APP调用
    • 向下调用底层硬件提供的p_button_opr中的init、read函数操作硬件
  • ②board_xxx.c分配/配置/注册button_operations结构体
    • 定义单板的按键操作函数

三、按键驱动程序实战

这里主体实现的函数文件对应有button_drv.c、button_drv.h、button_test.c、Makefile以及board_100ask_imx6ull.c。

3.1 头文件(button_drv.h)

这里主要注册button_operations结构体,并声明注册函数。

/*定义宏--防止头文件被重复包含*/
#ifndef _BUTTON_DRV_H
#define _BUTTON_DRV_H

struct button_operations {
	int count;
	void (*init) (int which);
	int (*read) (int which);
};

void register_button_operations(struct button_operations *opr);
void unregister_button_operations(void);

#endif

3.2 驱动程序(button_drv.c)

 这里主体实现分配/配置/注册file_operations结构体。具体驱动程序步骤见代码:

/* 说明:
	*1,本代码是跟学韦老师课程所编,增加了注释和理解
	*2,采用的是UTF-8编码格式
	*3,button_drv.c
*/

#include <linux/module.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/fs.h>
#include <linux/signal.h>
#include <linux/mutex.h>
#include <linux/mm.h>
#include <linux/timer.h>
#include <linux/wait.h>
#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <linux/poll.h>
#include <linux/capi.h>
#include <linux/kernelcapi.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/moduleparam.h>

#include "button_drv.h"


/*第一步:确定主设备号,这里由内核分配*/
static int major = 0;

static struct button_operations *p_button_opr;
static struct class *button_class;

/*
 *函数:		button_open
 *功能:
 			①从inode获取次设备号minor
 			②调用初始化函数
 *传入参数:
 			*flie:要打开的文件
 *返回参数:如果成功返回0
 *
*/
static int button_open (struct inode *inode, struct file *file)
{
	int minor = iminor(inode);
	p_button_opr->init(minor);
	return 0;
}

/*
 
  *函数:	    button_read
  *功能:	 	copy_to_user,将数据读到app中
  *传入参数:
			 *flie:要读的文件
			 *buf: 读的数据放入buf
			 *size:读多大的数据
			 *off:偏移值

  *返回参数:如果成功就返回1
*/

static ssize_t button_read (struct file *file, char __user *buf, size_t size, loff_t *off)
{
	unsigned int minor = iminor(file_inode(file));
	char level;
	int err;
	
	level = p_button_opr->read(minor);
	err = copy_to_user(buf, &level, 1);
	return 1;
}



/*第二步:定义自己的file_operations结构体*/
static struct file_operations button_fops = {
	.open = button_open,
	.read = button_read,
};

/*
 *注册函数:	register_button_operations
 *功能:		 调用结构体,创建设备节点
*/

void register_button_operations(struct button_operations *opr)
{
	int i;

	p_button_opr = opr;
	for (i = 0; i < opr->count; i++)
	{
		device_create(button_class, NULL, MKDEV(major, i), NULL, "100ask_button%d", i);
	}
}

void unregister_button_operations(void)
{
	int i;

	for (i = 0; i < p_button_opr->count; i++)
	{
		device_destroy(button_class, MKDEV(major, i));
	}
}


EXPORT_SYMBOL(register_button_operations);
EXPORT_SYMBOL(unregister_button_operations);

/*第三步:定义一个入口函数,调用register_chrdev*/
/*
 *函数:       button_init
 *差异点:      有多个次设备号
 *功能:		①注册主设备号	
 			②辅助完善:提供设备信息,自动创建设备节点:class_create
*/

int button_init(void)
{
	major = register_chrdev(0, "100ask_button", &button_fops);

	button_class = class_create(THIS_MODULE, "100ask_button");
	if (IS_ERR(button_class))
		return -1;
	
	return 0;
}
/*第四步:定义一个出口函数,调用register_chrdev*/

void button_exit(void)
{
	class_destroy(button_class);
	unregister_chrdev(major, "100ask_button");
}

module_init(button_init);
module_exit(button_exit);
MODULE_LICENSE("GPL");

3.3 驱动程序(button_100ask_imx6ull.c)

根据imx6ull pro开发板的gpio硬件数据手册编写。

#include <linux/module.h>

#include <linux/fs.h>
#include <linux/io.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <asm/io.h>

#include "button_drv.h"


/*查询数据手册*/
struct iomux {
    volatile unsigned int unnames[23];
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO00; /* offset 0x5c */
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO01;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO02;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO04;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO05;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO06;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO07;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO08;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO09;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_UART1_TX_DATA;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_UART1_RX_DATA;
    volatile unsigned int IOMUXC_SW_MUX_CTL_PAD_UART1_CTS_B;
};

struct imx6ull_gpio {
    volatile unsigned int dr;
    volatile unsigned int gdir;
    volatile unsigned int psr;
    volatile unsigned int icr1;
    volatile unsigned int icr2;
    volatile unsigned int imr;
    volatile unsigned int isr;
    volatile unsigned int edge_sel;
};

/* enable GPIO4 */
static volatile unsigned int *CCM_CCGR3; 

/* enable GPIO5 */
static volatile unsigned int *CCM_CCGR1; 

/* set GPIO5_IO03 as GPIO */
static volatile unsigned int *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER1;

/* set GPIO4_IO14 as GPIO */
static volatile unsigned int *IOMUXC_SW_MUX_CTL_PAD_NAND_CE1_B;

static struct iomux *iomux;

static struct imx6ull_gpio *gpio4;
static struct imx6ull_gpio *gpio5;

/*
 *函数:		board_imx6ull_button_init
 *功能		使能GPIO模块、设置GPIO5-01和GPIO04-14(GPIO模式、方向)
*/

static void board_imx6ull_button_init (int which) /* 初始化button, which-哪个button */      
{
    if (!CCM_CCGR1)
    {
        CCM_CCGR1 = ioremap(0x20C406C, 4);
        CCM_CCGR3 = ioremap(0x20C4074, 4);
        IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER1 = ioremap(0x229000C, 4);
		IOMUXC_SW_MUX_CTL_PAD_NAND_CE1_B        = ioremap(0x20E01B0, 4);

        iomux = ioremap(0x20e0000, sizeof(struct iomux));
        gpio4 = ioremap(0x020A8000, sizeof(struct imx6ull_gpio));
        gpio5 = ioremap(0x20AC000, sizeof(struct imx6ull_gpio));
    }

    if (which == 0)
    {
        /* 1. enable GPIO5 
         * CG15, b[31:30] = 0b11
         */
        *CCM_CCGR1 |= (3<<30);
        
        /* 2. set GPIO5_IO01 as GPIO 
         * MUX_MODE, b[3:0] = 0b101
         */
        *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER1 = 5;

        /* 3. set GPIO5_IO01 as input 
         * GPIO5 GDIR, b[1] = 0b0
         */
        gpio5->gdir &= ~(1<<1);
    }
    else if(which == 1)
    {
        /* 1. enable GPIO4 
         * CG6, b[13:12] = 0b11
         */
        *CCM_CCGR3 |= (3<<12);
        
        /* 2. set GPIO4_IO14 as GPIO 
         * MUX_MODE, b[3:0] = 0b101
         */
        IOMUXC_SW_MUX_CTL_PAD_NAND_CE1_B = 5;

        /* 3. set GPIO4_IO14 as input 
         * GPIO4 GDIR, b[14] = 0b0
         */
        gpio4->gdir &= ~(1<<14);
    }
    
}

/*
 *函数:		board_imx6ull_button_read
 *功能		读取寄存器
*/
static int board_imx6ull_button_read (int which) /* 读button, which-哪个 */
{
    //printk("%s %s line %d, button %d, 0x%x\n", __FILE__, __FUNCTION__, __LINE__, which, *GPIO1_DATAIN);
    if (which == 0)
        return (gpio5->psr & (1<<1)) ? 1 : 0;
    else
        return (gpio4->psr & (1<<14)) ? 1 : 0;
}

//两个按键
static struct button_operations my_buttons_ops = {
    .count = 2,
    .init = board_imx6ull_button_init,
    .read = board_imx6ull_button_read,
};

int board_imx6ull_button_drv_init(void)
{
    register_button_operations(&my_buttons_ops);
    return 0;
}

void board_imx6ull_button_drv_exit(void)
{
    unregister_button_operations();
}

module_init(board_imx6ull_button_drv_init);
module_exit(board_imx6ull_button_drv_exit);

MODULE_LICENSE("GPL");

3.4 Makefile文件

适用于imx6ull pro开发板内核。


# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH,          比如: export ARCH=arm
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=arm-buildroot-linux-gnueabihf-
# 2.3 PATH,          比如: export PATH=$PATH:/home/book/100ask_imx6ull-sdk/ToolChain/arm-buildroot-linux-gnueabihf_sdk-buildroot/bin 
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
#       请参考各开发板的高级用户使用手册
 
KERN_DIR = /home/book/100ask_imx6ull-sdk/Linux-4.9.88

all:
	make -C $(KERN_DIR) M=`pwd` modules 
	$(CROSS_COMPILE)gcc -o button_test button_test.c 

clean:
	make -C $(KERN_DIR) M=`pwd` modules clean
	rm -rf modules.order
	rm -f ledtest

# 参考内核源码drivers/char/ipmi/Makefile
# 要想把a.c, b.c编译成ab.ko, 可以这样指定:
# ab-y := a.o b.o
# obj-m += ab.o


obj-m	+= button_drv.o
obj-m	+= board_100ask_imx6ull.o

3.5 应用程序(button_test.c)

这里的实现,为简单的查询方式。


#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

/*
 * ./button_test /dev/100ask_button0
 *
 */
int main(int argc, char **argv)
{
	int fd;
	char val;
	
	/* 1. 判断参数 */
	if (argc != 2) 
	{
		printf("Usage: %s <dev>\n", argv[0]);
		return -1;
	}

	/* 2. 打开文件 */
	fd = open(argv[1], O_RDWR);
	if (fd == -1)
	{
		printf("can not open file %s\n", argv[1]);
		return -1;
	}

	/* 3. 写文件 */
	read(fd, &val, 1);
	printf("get button : %d\n", val);
	
	close(fd);
	
	return 0;
}

3.6 运行测试

3.6.1 首先编译内核(如果没编译过)

参照这篇文章【Linux】imx6ull开发板第一个驱动实验(led)_希希雾里的博客-CSDN博客

3.6.2 设置交叉编译工具链(Ubuntu)

export ARCH=arm
export CROSS_COMPILE=arm-buildroot-linux-gnueabihf-
export PATH=$PATH:/home/book/100ask_imx6ull-sdk/ToolChain/arm-buildroot-linux-gnueabihf_sdk-buildroot/bin

3.6.3 编译(Ubuntu)

make编译后,将.ko文件和 led_test_simple复制到nfs挂载的文件夹下。

make
cp *.ko button_test ~/nfs_rootfs/

3.6.4 上机测试(开发板)

mount -t nfs -o nolock,vers=3 192.168.5.11:/home/book/nfs_rootfs /mnt
//复制到开发板上
cp /mnt/button_drv.ko ./
cp /mnt/board_100ask_imx6ull.ko ./
cp /mnt/button_test ./
//安装驱动模块
insmod button_drv.ko
insmod board_100ask_imx6ull.ko
 
//查询是否有我们的设备节点
ls /dev/100*
//读取
./button_test /dev/100ask_button0

读取按键结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/633099.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

我的开源实践之路!这一路我遇到的困难和收获总结

Datawhale干货 作者&#xff1a;诸葛子房&#xff0c;Datawhale成员 从参与Apache开源项目&#xff0c;到凭借业务需求独自开发个人开源项目&#xff1b;从项目开源出来无人问津到至今500star&#xff0c;多个企业级用户&#xff0c;在开源过程中&#xff0c;我也从走过低谷&a…

Matplotlib的一些总结

plt.figure(numNone, figsizeNone, dpiNone, facecolorNone, edgecolorNone, frameonTrue) 参数说明&#xff1a; 1.num&#xff1a;图像编码或者名称&#xff0c;数字是编码&#xff0c;字符串是名称 2.figsize&#xff1a;宽和高&#xff0c;单位是英尺 3.dpi&#xff1a;指…

chatgpt赋能python:Python怎么取二进制低三位?

Python怎么取二进制低三位&#xff1f; 在Python编程中&#xff0c;处理位运算是一个非常常见的任务。其中&#xff0c;取二进制低三位也是其中的一项操作。那么&#xff0c;如何实现这个操作呢&#xff1f;本篇文章将为大家介绍Python如何取二进制低三位的方法。 什么是二进…

苹果Vision Pro:虚拟现实走进个人计算机未来

一段时间以来&#xff0c;虚拟现实&#xff08;VR&#xff09;这个概念以其无限的潜力吸引了全世界&#xff0c;用户可以进入身临其境的计算机生成的环境中&#xff0c;这些环境通常模糊了数字和物理世界之间的界线。多年来&#xff0c;VR 技术持续以惊人的速度发展&#xff0c…

软考A计划-系统架构师-学习笔记-第三弹

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff…

yolov4——你总能在这找到你想要的答案

目录 一&#xff1a;前言 二&#xff1a;一些数据增强的方法 三&#xff1a;自提议 四&#xff1a;dropout 普通的dropout yolov4的dropblock 五&#xff1a;Label smothing 标签平滑 六&#xff1a; GIOU&#xff0c;DIOU&#xff0c;CIOU 七&#xff1a; 对网络结构的…

代码随想录算法训练营第五十五天 | 力扣 392.判断子序列, 115.不同的子序列

392.判断子序列 题目 392. 判断子序列 给定字符串 s 和 t &#xff0c;判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些&#xff08;也可以不删除&#xff09;字符而不改变剩余字符相对位置形成的新字符串。&#xff08;例如&#xff0c;"ace&quo…

Mysql 经典面试题总结

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…

Flask+pyecharts实现电影数据分析可视化

之前有写过pyecharts实现电影数据分析可视化和Djangopyecharts实现电影数据分析可视化&#xff0c;但是综合起来感觉还是有缺陷&#xff0c;所以我使用Flaskpyecharts重新整合一下电影数据可视化。 下面是完成后的截图 这应该就算是可视化大屏了吧 文章目录 代码结构index.cs…

MM32F3273G8P火龙果开发板MindSDK开发教程3 - Sysclk的配置

MM32F3273G8P火龙果开发板MindSDK开发教程3 - Sysclk的配置 1、时钟初始化流程 一般流程为startup_mm32f3273g.s中调用system_mm32f3273g.c中的SystemInit函数完成系统时钟的初始&#xff0c;而system_mm32f3273g.c中函数是空的。 原来MindSdk时钟初始化的流程放到了clock_i…

【ArcGIS Pro二次开发】(37):图层一键应用村规、国空符号系统

在国空、村规的实际工作中&#xff0c;将要素类加载到地图中后&#xff0c;需要将图斑的符号系统修改成国空或村规的样式。一般的做法是使用样式库或已经做好的图层文件进行匹配&#xff0c;这个工具要实现的功能是直接应用特定的符号系统&#xff0c;其实用的方法也就是GP工具…

HTMLCSS Day02 CSS简介与选择器

文章目录 1.CSS32.语法2.1.CSS声明&#xff08;CSS declarations&#xff09;2.2.CSS声明块&#xff08; CSS declaration blocks&#xff09;2.3.CSS规则集2.4.CSS可读性- 空白&#xff08; White space&#xff09;- 注释&#xff08; Comments&#xff09;- 速记写法&#x…

【OpenMMLab AI实战营第二期】目标检测笔记

目标检测 目标检测的基本范式 划窗 使用卷积实现密集预测 锚框 多尺度检测与FPN 单阶段&无锚框检测器选讲 RPN YOLO、SSD Focal Loss与RetinaNet FCOS YOLO系列选讲 什么是目标检测 目标检测&#xff1a;给定一张图片&#xff0c;用矩形框框出所有感兴趣物体同…

【系统迁移:笔记本更换硬盘,不重装系统方法】

本人在使用笔记本的时候&#xff0c;C盘空间经常不够用。每次空间满了&#xff0c;就要清理磁盘&#xff0c;卸载一些软件。后来网上搜索一些C盘扩容的办法&#xff0c;列在下面了。去官方下载 diskgenius 软件&#xff0c;点击 here 跳转官网。 电脑型号&#xff1a;联想小新…

操作系统(3.5)--死锁概述

目录 资源问题 可重用性资源和消耗性资源 可抢占性资源和不可抢占性资源 计算机系统中的死锁 1.竞争不可抢占性资源 2.竞争可消耗资源产生死锁 3.进程推进顺序不当引发死锁 死锁的定义、必要条件和处理方法 死锁的定义 产生死锁的必要条件 处理死锁的基本方法 资源…

华为OD机试真题(JavaScript),挑选字符串(100%通过+复盘思路)

一、题目描述 给定a-z&#xff0c;26个英文字母小写字符串组成的字符串A和B&#xff0c;其中A可能存在重复字母&#xff0c;B不会存在重复字母&#xff0c;现从字符串A中按规则挑选一些字母可以组成字符串B挑选规则如下&#xff1a; 同一个位置的字母只能挑选一次&#xff1b…

JS reduce方法对后台数据的处理案例(秒解决)

目录 一、前言 二、案例1 三、案例二 四、小结 一、前言 在我们项目开发阶段&#xff0c;当后端传回来的数据不太理想或者不好直接使用的话&#xff0c;那么此时我们就必须对数据进行处理&#xff0c;这次我就遇到了一种情况&#xff0c;当后端返回如下格式的数据&#xff…

Rust每日一练(Leetday0024) 爬楼梯、简化路径、编辑距离

目录 70. 爬楼梯 Climbing Stairs &#x1f31f; 71. 简化路径 Simplify Path &#x1f31f;&#x1f31f; 72. 编辑距离 Edit Distance &#x1f31f;&#x1f31f;&#x1f31f; &#x1f31f; 每日一练刷题专栏 &#x1f31f; Rust每日一练 专栏 Golang每日一练 专…

dubbo源码阅读之-java spi, dubbo spi 和 Spring spi 到底有啥区别

java spi, dubbo spi 和 Spring spi 到底有啥区别 SPIJava SPI案例优缺点 Spring SPIDubbo SPI概述案例源码分析 自己实现一个SPI SPI SPI 全称为 Service Provider Interface&#xff0c;是一种服务发现机制。SPI 的本质是将接口实现类的全限定名配置在文件中&#xff0c;并由…

北京通信展的精华内容,都在这里!(中篇)

█ 中国移动 中国第一大运营商&#xff1a; 中国移动展出的内容非常非常多&#xff0c;既有应用&#xff0c;也有技术干货&#xff1a; 通感一体化&#xff1a; 6G&#xff1a; 猜猜这是什么&#xff1a; 揭晓答案&#xff1a; 1:2的卫星单元模型&#xff1a; RIS智能超表面&am…