RabbitMQ - 延迟队列

news2024/11/24 10:38:01

RabbitMQ - 延迟队列

  • 延迟队列介绍
  • RabbitMQ 中的 TTL
  • 整合 springboot
  • 队列 TTL
  • 延时队列TTL优化
  • Rabbitmq 插件实现延迟队列
  • 总结

延迟队列介绍

延迟队列概念:
延时队列,队列内部是有序的,最重要的特性就体现在它的延时属性上,延时队列中的元素是希望 在指定时间到了以后或之前取出和处理,简单来说,延时队列就是用来存放需要在指定时间被处理的 元素的队列。

延迟队列使用场景:
1.订单在十分钟之内未支付则自动取消 2.新创建的店铺,如果在十天内都没有上传过商品,则自动发送消息提醒。 3.用户注册成功后,如果三天内没有登陆则进行短信提醒。 4.用户发起退款,如果三天内没有得到处理则通知相关运营人员。 5.预定会议后,需要在预定的时间点前十分钟通知各个与会人员参加会议

这些场景都有一个特点,需要在某个事件发生之后或者之前的指定时间点完成某一项任务,如: 发生订单生成事件,在十分钟之后检查该订单支付状态,然后将未支付的订单进行关闭;那我们一直轮询数据,每秒查一次,取出需要被处理的数据,然后处理不就完事了吗?

如果数据量比较少,确实可以这样做,比如:对于“如果账单一周内未支付则进行自动结算”这样的需求, 如果对于时间不是严格限制,而是宽松意义上的一周,那么每天晚上跑个定时任务检查一下所有未支付的账单,确实也是一个可行的方案。但对于数据量比较大,并且时效性较强的场景,如:“订单十分钟内未支付则关闭“,短期内未支付的订单数据可能会有很多,活动期间甚至会达到百万甚至千万级别,对这么庞大的数据量仍旧使用轮询的方式显然是不可取的,很可能在一秒内无法完成所有订单的检查,同时会给数据库带来很大压力,无法满足业务要求而且性能低下。

在这里插入图片描述

RabbitMQ 中的 TTL

TTL 是什么呢?TTL 是 RabbitMQ 中一个消息或者队列的属性,表明一条消息或者该队列中的所有消息的最大存活时间,单位是毫秒。

换句话说,如果一条消息设置了 TTL 属性或者进入了设置TTL 属性的队列,那么这条消息如果在 TTL 设置的时间内没有被消费,则会成为"死信"。如果同时配置了队列的TTL 和消息的 TTL,那么较小的那个值将会被使用,有两种方式设置 TTL。

队列设置TTL
在创建队列的时候设置队列的“x-message-ttl”属性
在这里插入图片描述
消息设置TTL
是针对每条消息设置TTL
在这里插入图片描述
两者的区别

如果设置了队列的 TTL 属性,那么一旦消息过期,就会被队列丢弃(如果配置了死信队列被丢到死信队列中),而第二种方式,消息即使过期,也不一定会被马上丢弃,因为消息是否过期是在即将投递到消费者之前判定的,如果当前队列有严重的消息积压情况,则已过期的消息也许还能存活较长时间;

另外,还需要注意的一点是,如果不设置 TTL,表示消息永远不会过期,如果将 TTL 设置为 0,则表示除非此时可以直接投递该消息到消费者,否则该消息将会被丢弃。

整合 springboot

前一小节我们介绍了死信队列,刚刚又介绍了 TTL,至此利用 RabbitMQ 实现延时队列的两大要素已经集齐,接下来只需要将它们进行融合,再加入一点点调味料,延时队列就可以新鲜出炉了。想想看,延时队列,不就是想要消息延迟多久被处理吗,TTL 则刚好能让消息在延迟多久之后成为死信,另一方面, 成为死信的消息都会被投递到死信队列里,这样只需要消费者一直消费死信队列里的消息就完事了,因为里面的消息都是希望被立即处理的消息。

1、创建一个空项目:

在这里插入图片描述

2、添加依赖:

<dependencies>
   <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter</artifactId>
    </dependency>
    <!--RabbitMQ 依赖-->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-amqp</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-test</artifactId>
        <scope>test</scope>
    </dependency>
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
        <version>1.2.47</version>
    </dependency>
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
    </dependency>
    <!--swagger-->
    <dependency>
        <groupId>io.springfox</groupId>
        <artifactId>springfox-swagger2</artifactId>
        <version>3.0.0</version>
    </dependency>
    <dependency>
        <groupId>io.springfox</groupId>
        <artifactId>springfox-swagger-ui</artifactId>
        <version>3.0.0</version>
    </dependency>
    <!--RabbitMQ 测试依赖-->
    <dependency>
        <groupId>org.springframework.amqp</groupId>
        <artifactId>spring-rabbit-test</artifactId>
        <scope>test</scope>
    </dependency>
</dependencies>

3、修改配置文件

spring.rabbitmq.host=42.192.149.71
spring.rabbitmq.port=5672
spring.rabbitmq.username=admin
spring.rabbitmq.password=123456

4、添加Swagger 配置类

package com.oddfar.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import springfox.documentation.builders.ApiInfoBuilder;
import springfox.documentation.service.ApiInfo;
import springfox.documentation.service.Contact;
import springfox.documentation.spi.DocumentationType;
import springfox.documentation.spring.web.plugins.Docket;
import springfox.documentation.swagger2.annotations.EnableSwagger2;


@Configuration
@EnableSwagger2
public class SwaggerConfig {

    @Bean
    public Docket webApiConfig() {
        return new Docket(DocumentationType.SWAGGER_2)
                .groupName("webApi")
                .apiInfo(webApiInfo())
                .select()
                .build();
    }

    private ApiInfo webApiInfo() {
        return new ApiInfoBuilder()
                .title("rabbitmq 接口文档")
                .description("本文档描述了 rabbitmq 微服务接口定义")
                .version("1.0")
                .contact(new Contact("zhiyuan", "http://oddfar.com", "test@qq.com"))
                .build();
    }

}

队列 TTL

代码架构图
创建两个队列 QA 和 QB,两者队列 TTL 分别设置为 10S 和 40S,然后在创建一个交换机 X 和死信交 换机 Y,它们的类型都是direct,创建一个死信队列 QD,它们的绑定关系如下:
在这里插入图片描述

原先配置队列信息,写在了生产者和消费者代码中,现在可写咋配置类中,生产者只发消息,消费者只接受消息

1、配置文件类代码 :

package com.oddfar.config;

import org.springframework.amqp.core.*;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.util.HashMap;
import java.util.Map;

@Configuration
public class TtlQueueConfig {
    public static final String X_EXCHANGE = "X";
    public static final String QUEUE_A = "QA";
    public static final String QUEUE_B = "QB";
    //死信交换机
    public static final String Y_DEAD_LETTER_EXCHANGE = "Y";
    //死信队列
    public static final String DEAD_LETTER_QUEUE = "QD";

    // 声明 xExchange
    @Bean("xExchange")
    public DirectExchange xExchange() {
        return new DirectExchange(X_EXCHANGE);
    }

    // 声明 死信队列交换机
    @Bean("yExchange")
    public DirectExchange yExchange() {
        return new DirectExchange(Y_DEAD_LETTER_EXCHANGE);
    }

    //声明队列 A ttl 为 10s 并绑定到对应的死信交换机
    @Bean("queueA")
    public Queue queueA() {
        Map<String, Object> args = new HashMap<>(3);
        //声明当前队列绑定的死信交换机
        args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
        //声明当前队列的死信路由 key
        args.put("x-dead-letter-routing-key", "YD");
        //声明队列的 TTL
        args.put("x-message-ttl", 10000);
        return QueueBuilder.durable(QUEUE_A).withArguments(args).build();
    }

    // 声明队列 A 绑定 X 交换机
    @Bean
    public Binding queueaBindingX(@Qualifier("queueA") Queue queueA,
                                  @Qualifier("xExchange") DirectExchange xExchange) {
        return BindingBuilder.bind(queueA).to(xExchange).with("XA");
    }

    //声明队列 B ttl 为 40s 并绑定到对应的死信交换机
    @Bean("queueB")
    public Queue queueB() {
        Map<String, Object> args = new HashMap<>(3);
        //声明当前队列绑定的死信交换机
        args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
        //声明当前队列的死信路由 key
        args.put("x-dead-letter-routing-key", "YD");
        //声明队列的 TTL
        args.put("x-message-ttl", 40000);
        return QueueBuilder.durable(QUEUE_B).withArguments(args).build();
    }

    //声明队列 B 绑定 X 交换机
    @Bean
    public Binding queuebBindingX(@Qualifier("queueB") Queue queue1B,
                                  @Qualifier("xExchange") DirectExchange xExchange) {
        return BindingBuilder.bind(queue1B).to(xExchange).with("XB");
    }

    //声明死信队列 QD
    @Bean("queueD")
    public Queue queueD() {
        return new Queue(DEAD_LETTER_QUEUE);
    }

    //声明死信队列 QD 绑定关系
    @Bean
    public Binding deadLetterBindingQAD(@Qualifier("queueD") Queue queueD,
                                        @Qualifier("yExchange") DirectExchange yExchange) {
        return BindingBuilder.bind(queueD).to(yExchange).with("YD");
    }

}

2、消息生产者代码

package com.oddfar.contorller;

import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.Date;

@Slf4j
@RequestMapping("ttl")
@RestController
public class SendMsgController {
    @Autowired
    private RabbitTemplate rabbitTemplate;

    @GetMapping("sendMsg/{message}")
    public void sendMsg(@PathVariable String message) {
        log.info("当前时间:{},发送一条信息给两个 TTL 队列:{}", new Date(), message);
        rabbitTemplate.convertAndSend("X", "XA", "消息来自 ttl 为 10S 的队列: " + message);
        rabbitTemplate.convertAndSend("X", "XB", "消息来自 ttl 为 40S 的队列: " + message);
    }
    
}

3、消息消费者代码

package com.oddfar.consumer;

import com.rabbitmq.client.Channel;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.core.Message;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;

import java.io.IOException;
import java.util.Date;

/**
 * 消费者 - 死信队列
 */
@Slf4j
@Component
public class DeadLetterQueueConsumer {

    @RabbitListener(queues = "QD")
    public void receiveD(Message message, Channel channel) throws IOException {
        String msg = new String(message.getBody());
        log.info("当前时间:{},收到死信队列信息{}", new Date().toString(), msg);
    }

}

发起一个请求 http://localhost:8080/ttl/sendMsg/嘻嘻嘻
在这里插入图片描述

第一条消息在 10S 后变成了死信消息,然后被消费者消费掉,第二条消息在 40S 之后变成了死信消息, 然后被消费掉,这样一个延时队列就打造完成了。

不过,如果这样使用的话,岂不是每增加一个新的时间需求,就要新增一个队列,这里只有 10S 和 40S 两个时间选项,如果需要一个小时后处理,那么就需要增加TTL 为一个小时的队列,如果是预定会议室然后提前通知这样的场景,岂不是要增加无数个队列才能满足需求?

延时队列TTL优化

在这里新增了一个队列 QC,绑定关系如下,该队列不设置TTL 时间
在这里插入图片描述

配置文件类代码:

@Configuration
public class MsgTtlQueueConfig {
    public static final String Y_DEAD_LETTER_EXCHANGE = "Y";
    public static final String QUEUE_C = "QC";

    //声明队列 C 死信交换机
    @Bean("queueC")
    public Queue queueB() {
        Map<String, Object> args = new HashMap<>(3);
        //声明当前队列绑定的死信交换机
        args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
        //声明当前队列的死信路由 key
        args.put("x-dead-letter-routing-key", "YD");
        //没有声明 TTL 属性
        return QueueBuilder.durable(QUEUE_C).withArguments(args).build();
    }

    //声明队列 B 绑定 X 交换机
    @Bean
    public Binding queuecBindingX(@Qualifier("queueC") Queue queueC,
                                  @Qualifier("xExchange") DirectExchange xExchange) {
        return BindingBuilder.bind(queueC).to(xExchange).with("XC");
    }
}

生产者代码:

/**
 * 延时队列优化
 * @param message 消息
 * @param ttlTime 延时的毫秒
 */
@GetMapping("sendExpirationMsg/{message}/{ttlTime}")
public void sendMsg(@PathVariable String message, @PathVariable String ttlTime) {
    rabbitTemplate.convertAndSend("X", "XC", message, correlationData -> {
        correlationData.getMessageProperties().setExpiration(ttlTime);
        return correlationData;
    });
    log.info("当前时间:{},发送一条时长{}毫秒 TTL 信息给队列 C:{}", new Date(), ttlTime, message);
}

发起请求

http://localhost:8080/ttl/sendExpirationMsg/你好1/20000

http://localhost:8080/ttl/sendExpirationMsg/你好2/2000
在这里插入图片描述

看起来似乎没什么问题,但是在最开始的时候,就介绍过如果使用在消息属性上设置 TTL 的方式,消息可能并不会按时“死亡“

因为 RabbitMQ 只会检查第一个消息是否过期,如果过期则丢到死信队列, 如果第一个消息的延时时长很长,而第二个消息的延时时长很短,第二个消息并不会优先得到执行。

这也就是为什么第二个延时2秒,却后执行。

Rabbitmq 插件实现延迟队列

上文中提到的问题,确实是一个问题,如果不能实现在消息粒度上的 TTL,并使其在设置的TTL 时间及时死亡,就无法设计成一个通用的延时队列。那如何解决呢,接下来我们就去解决该问题。

安装延时队列插件

可去官网下载 rabbitmq_delayed_message_exchange 插件,放置到 RabbitMQ 的插件目录。

进入 RabbitMQ 的安装目录下的 plgins 目录,执行下面命令让该插件生效,然后重启 RabbitMQ

# ls
erlang-21.3.8.21-1.el7.x86_64.rpm  rabbitmq_delayed_message_exchange-3.8.0.ez  rabbitmq-server-3.8.8-1.el7.noarch.rpm
#移动
cp rabbitmq_delayed_message_exchange-3.8.0.ez /usr/lib/rabbitmq/lib/rabbitmq_server-3.8.8/plugins
#安装
rabbitmq-plugins enable rabbitmq_delayed_message_exchange
#重启服务
systemctl restart rabbitmq-server

在这里插入图片描述

代码

在这里新增了一个队列delayed.queue,一个自定义交换机 delayed.exchange,绑定关系如下:
在这里插入图片描述

1、配置文件类代码:

在我们自定义的交换机中,这是一种新的交换类型,该类型消息支持延迟投递机制消息传递后并不会立即投递到目标队列中,而是存储在 mnesia(一个分布式数据系统)表中,当达到投递时间时,才投递到目标队列中。

@Configuration
public class DelayedQueueConfig {
    public static final String DELAYED_QUEUE_NAME = "delayed.queue";
    public static final String DELAYED_EXCHANGE_NAME = "delayed.exchange";
    public static final String DELAYED_ROUTING_KEY = "delayed.routingkey";

    @Bean
    public Queue delayedQueue() {
        return new Queue(DELAYED_QUEUE_NAME);
    }

    //自定义交换机 我们在这里定义的是一个延迟交换机
    @Bean
    public CustomExchange delayedExchange() {
        Map<String, Object> args = new HashMap<>();
        //自定义交换机的类型
        args.put("x-delayed-type", "direct");
        return new CustomExchange(DELAYED_EXCHANGE_NAME, "x-delayed-message", true, false, args);
    }

    @Bean
    public Binding bindingDelayedQueue(@Qualifier("delayedQueue") Queue queue,
                                       @Qualifier("delayedExchange") CustomExchange delayedExchange) {
        return BindingBuilder.bind(queue).to(delayedExchange).with(DELAYED_ROUTING_KEY).noargs();
    }

}

2、生产者代码

@GetMapping("sendDelayMsg/{message}/{delayTime}")
public void sendMsg(@PathVariable String message, @PathVariable Integer delayTime) {
    rabbitTemplate.convertAndSend(DELAYED_EXCHANGE_NAME, DELAYED_ROUTING_KEY, message,
            correlationData -> {
                correlationData.getMessageProperties().setDelay(delayTime);
                return correlationData;
            });
    log.info(" 当 前 时 间 : {}, 发 送 一 条 延 迟 {} 毫秒的信息给队列 delayed.queue:{}", new Date(), delayTime, message);
}

3、消费者代码

/**
 * 消费者 - 基于插件的延时队列
 */
@Slf4j
@ComponentScan
public class DelayQueueConsumer {

    public static final String DELAYED_QUEUE_NAME = "delayed.queue";

    @RabbitListener(queues = DELAYED_QUEUE_NAME)
    public void receiveDelayedQueue(Message message) {
        String msg = new String(message.getBody());
        log.info("当前时间:{},收到延时队列的消息:{}", new Date().toString(), msg);
    }
}

发送请求:

http://localhost:8080/ttl/sendDelayMsg/hello1/20000
http://localhost:8080/ttl/sendDelayMsg/hello2/2000
在这里插入图片描述

第二个消息被先消费掉了,符合预期

总结

延时队列在需要延时处理的场景下非常有用,使用 RabbitMQ 来实现延时队列可以很好的利用 RabbitMQ 的特性,如:消息可靠发送、消息可靠投递、死信队列来保障消息至少被消费一次以及未被正确处理的消息不会被丢弃。另外,通过 RabbitMQ 集群的特性,可以很好的解决单点故障问题,不会因为 单个节点挂掉导致延时队列不可用或者消息丢失。

当然,延时队列还有很多其它选择,比如利用 Java 的 DelayQueue,利用 Redis 的 zset,利用 Quartz 或者利用 kafka 的时间轮,这些方式各有特点,看需要适用的场景

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/624477.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《Lua程序设计》--学习3

输入输出 简单I/O模型 Lua 文件 I/O | 菜鸟教程 (runoob.com) 暂留 补充知识 局部变量和代码块 Lua语言中的变量在默认情况下是全局变量&#xff0c;所有的局部变量在使用前必须声明 在交互模式中&#xff0c;每一行代码就是一个代码段&#xff08;除非不是一条完整的命…

spark的高阶用法

广播变量broadcast 使用场景:本地集合变量和分布式变量(rdd)进行关联的时候使用 优点:1.可以节省io操作.2.减少executor的内存占用 #定义 map_list {(1,dawang,22),(2,xiaogou,333).....} broadcast sc..broadcast(map_list) #使用 for i in broadcast.value:print(i)累加器a…

【TA100 】 LDR与HDR

一、LDR和HDR的基本概念 1.HDR 、LDR、动态范围 ● Dynamic Range&#xff08;动态范围&#xff09;最高亮度/最低亮度 ● HDR High Dynamic Range ● LDR Low Dynamic Range ● ToneMapping&#xff1a;将超高的动态范围&#xff08;HDR&#xff09;转换到我们日常显示的屏…

指定英国名校|社会科学老师喜赴曼彻斯特大学访学研究

社会科学较理工科专业申请访问学者的难度更大&#xff0c;何况M老师还有学校、专业、时间等要求。最终我们为其落实了世界50强名校—曼彻斯特大学全球发展研究所的职位&#xff0c;专业方向高度契合。在对方行政办理流程时遇到一些阻力&#xff0c;好在有惊无险地完成了全部流程…

Simulink尝试双脉冲实验验证MOSFET二极管反向恢复的特性(附仿真模型)

目录 前言 双脉冲实验 Simulink仿真对比 总结 前言 最近在做交错串联的图腾柱单相PFC的项目&#xff0c;基于模型的开发&#xff0c;想要在仿真上实现过零点尖峰电流产生并通过软启动进行抑制&#xff0c;把整个过程都通过仿真实现出来&#xff0c;在这个过程中尝试了Simul…

深入 Synchroized 原理,从入门到精通

目录 一、倔强青铜 1.1 多线程一定快吗&#xff1f; 1.2 上下文切换 1.3 测试上下文切换次数 1.4 Java内存模型 1.5 主内存与工作内存之间的数据交互过程 二、秩序白银 2.1 多线程带来的可见性问题 2.2 多线程带来的原子性问题 2.3 多线程带来的有序性问题 三、荣耀…

Yolov5涨点神器:RIFormerBlock助力检测|CVPR2023|RIFormer:无需TokenMixer也能达成SOTA性能的极简ViT架构

1.RIFormer介绍 论文:https://arxiv.org/pdf/2304.05659.pdf 本文基于重参数机制提出了RepIdentityFormer方案以研究无Token Mixer的架构体系。紧接着,作者改进了学习架构以打破无Token Mixer架构的局限性并总结了优化策略。搭配上所提优化策略后,本文构建了一种极致简单且…

目标检测算法:Faster-RCNN论文解读

目标检测算法&#xff1a;Faster-RCNN论文解读 前言 ​ 其实网上已经有很多很好的解读各种论文的文章了&#xff0c;但是我决定自己也写一写&#xff0c;当然&#xff0c;我的主要目的就是帮助自己梳理、深入理解论文&#xff0c;因为写文章&#xff0c;你必须把你所写的东西表…

Python爬虫——爬取阳光高考专业数据并对所有专业进行数据分析

前言 阳光高考是中国高考信息网&#xff0c;覆盖了中国所有院校以及所有专业信息。本文目的是爬取阳光高考的专业信息&#xff0c;包括专业名称&#xff0c;专业代码&#xff0c;专业简介&#xff0c;男女比例&#xff0c;在校生规模&#xff0c;就业方向&#xff0c;平均薪资…

LVS负载均衡 DR模式

目录 -----------------DR模式 LVS负载均衡群集部署----------------------------------- 1.配置负载调度器&#xff08;192.168.110.100&#xff09; 2.部署共享存储&#xff08;NFS服务器&#xff1a;192.168.80.13&#xff09; 3.配置节点服务器&#xff08;192.168.80.…

H5吊起微信小程序(适用于从短信、邮件、微信外网页等场景打开小程序任意页面)

​1.实现功能 H5页面中实现打开微信小程序的功能用户在网页中一键唤起小程序 2.前提条件 必须是企业的小程序获取AppID&#xff0c;也就是小程序唯一凭证&#xff0c;可在微信公众平台 - 设置 - 开发设置」页中获得。&#xff08;需要已经成为开发者&#xff0c;且帐号没有异…

springboot mybatis-plus 代码生成工具

介绍 基于mybatis-plus代码生成工具 后续会不断完善 规划 后续会基于此功能搞低代码平台&#xff0c;会有前端VUE mybatis-plus介绍&特性 • 无侵入&#xff1a;只做增强不做改变&#xff0c;引入它不会对现有工程产生影响&#xff0c;如丝般顺滑 • 损耗小&#xff1…

【玩转Linux操作】查找命令时间日期指令

&#x1f38a;专栏【玩转Linux操作】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【Counting Stars 】 欢迎并且感谢大家指出小吉的问题&#x1f970; 文章目录 &#x1f354;查找⭐find命令&#x1f388;按文件名&#x1f388…

Mac 远程连接Windows服务器

要从 Mac 电脑远程连接到 Windows 服务器&#xff0c;您可以使用 macOS 上内置的远程桌面连接 (RDC) 客户端。 方法如下&#xff1a; 确保您要连接的 Windows 服务器已启用远程桌面并且可以从您的网络访问。 您可能需要配置服务器的防火墙设置以允许远程桌面连接。 在您的 Ma…

Knife4j的请求示例当中有很多空白行

问题描述&#xff1a; 按正常来说不应该有上方的空白&#xff0c;当然如果只是查看我也不至于非要解决他&#xff0c;主要是假如接口是json传参&#xff0c;调试界面都没办法修改参数…网上相关的资料又非常少&#xff0c;我别的项目引用的同样的依赖并没有出现如此情况。 引入…

Java中泛型的?和T的区别

文章目录 1、前言2、java中泛型&#xff1f;、T2.1、&#xff1f;、T的概念2.2、&#xff1f;、T的用法2.1.1、T用法2.1.2、&#xff1f;用法 2.3、T、&#xff1f;在继承上的体现2.4、有限制通配符2.4.1、? extends A:2.4.2、? super A: 2.5、无限制通配符和有限制通配符的数…

峰会回顾 | 圆桌对话:低代码行业应用激发产业创新势能

编者荐语&#xff1a; 在万应低代码CMO徐智峰的主持下&#xff0c;中铁城建集团信息化管理部技术经理熊杰、中电信数智科技有限公司湖南分公司总经理助理施晓辉、湖南省建筑设计院集团数字科技中心开发部部长母建玉、长沙市规划信息服务中心技术总监尹彦围绕进行了精彩的圆桌对…

电脑监控系统有什么用处?

相信很多企业用户对电脑监控系统并不陌生&#xff0c;该系统存在于我们的日常工作中。我们都知道它会监管在工作时的行为&#xff0c;所以减少了很多摸鱼时间&#xff0c;只能一心工作。除此之外还有其他的很多功能&#xff0c;主要分为四大部分&#xff0c;下面让我们来一起了…

基于HAL库的STM32单定时器多路输入捕获测量PWM的频率和占空比实现(状态机方式实现)

目录 写在前面 先回顾下定时器的单路捕获PWM 多路捕获PWM的频率和占空比&#xff08;状态机实现) 我的思路: 状态图 配置 给出示例代码 测试效果 写在前面 先有了这篇文章实现了单定时器的多通道测量频率&#xff0c;以外部时钟的方式可测量任意频率的方波),奈何不能多路…

教你如何多人播报配音把

你们有没有在日常生活中遇到短视频的配音呢&#xff1f;那你们知不知道多人播报配音呢&#xff1f;其实它就是指通过合成多个不同的声音&#xff0c;实现多人对话或演唱的效果&#xff0c;并且可选择不同的声音和语速进行播报。而且它可以应用在广告宣传、盲人听书、电影动画、…