原文地址: https://www.iotword.com/3138.html
1. 常用上采样方式介绍
1. 1 最近邻插值(Nearest neighbor interpolation)
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
>>> input
tensor([[[[ 1., 2.],
[ 3., 4.]]]])
>>> m = nn.Upsample(scale_factor=2, mode='nearest')
>>> m(input)
tensor([[[[ 1., 1., 2., 2.],
[ 1., 1., 2., 2.],
[ 3., 3., 4., 4.],
[ 3., 3., 4., 4.]]]])
1.2. 双线性插值(Bi-Linear interpolation)
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
>>> input
tensor([[[[ 1., 2.],
[ 3., 4.]]]])
>>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False
>>> m(input)
tensor([[[[ 1.0000, 1.2500, 1.7500, 2.0000],
[ 1.5000, 1.7500, 2.2500, 2.5000],
[ 2.5000, 2.7500, 3.2500, 3.5000],
[ 3.0000, 3.2500, 3.7500, 4.0000]]]])
>>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
>>> m(input)
tensor([[[[ 1.0000, 1.3333, 1.6667, 2.0000],
[ 1.6667, 2.0000, 2.3333, 2.6667],
[ 2.3333, 2.6667, 3.0000, 3.3333],
[ 3.0000, 3.3333, 3.6667, 4.0000]]]])
1.3. 双立方插值(Bi-Cubic interpolation)
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
>>> input
tensor([[[[ 1., 2.],
[ 3., 4.]]]])
>>> m = nn.Upsample(scale_factor=2, mode='bicubic') # align_corners=False
>>> m(input)
tensor([[[[0.6836, 1.0156, 1.5625, 1.8945],
[1.3477, 1.6797, 2.2266, 2.5586],
[2.4414, 2.7734, 3.3203, 3.6523],
[3.1055, 3.4375, 3.9844, 4.3164]]]])
>>> m = nn.Upsample(scale_factor=2, mode='bicubic', align_corners=True)
>>> m(input)
tensor([[[[1.0000, 1.3148, 1.6852, 2.0000],
[1.6296, 1.9444, 2.3148, 2.6296],
[2.3704, 2.6852, 3.0556, 3.3704],
[3.0000, 3.3148, 3.6852, 4.0000]]]])
计算效果:最近邻插值算法 < 双线性插值 < 双三次插值
计算速度:最近邻插值算法 > 双线性插值 > 双三次插值
1.4 三线性插值(Trilinear Interpolation)
当align_corners = True时,线性插值模式(线性、双线性、双三线性和三线性)不按比例对齐输出和输入像素,因此输出值可以依赖于输入的大小
1.5. 反池化
2. 转置卷积
yolov5默认采用的就是最近邻插值
2.1 实验结果
这里我将原本的最近邻插值的上采样方式替换为转置卷积;有人通过实验证明了确实涨点,但是我在VOC数据集上测试并没有涨点,mAP0.5大概掉了不到1点
2.2 修改方式:
- 第一步;在
models/yolo.py
添加nn.ConvTranspose2d
- 第二步;
models/yolo.py
添加如下代码
elif m is nn.ConvTranspose2d:
if len(args) >= 7:
args[6] = make_divisible(args[6] * gw, 8)
- 第三步;修改配置文件,以yolov5s.yaml为例
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.ConvTranspose2d, [512, 4, 2, 1, 0, 512]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.ConvTranspose2d, [256, 4, 2, 1, 0, 256]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
出现下面这样子就是运行成功啦