接口自动化测试框架开发(pytest+allure+aiohttp+ 用例自动生成)

news2024/11/30 12:47:51

近期准备优先做接口测试的覆盖,为此需要开发一个测试框架,经过思考,这次依然想做点儿不一样的东西。

  • 接口测试是比较讲究效率的,测试人员会希望很快能得到结果反馈,然而接口的数量一般都很多,而且会越来越多,所以提高执行效率很有必要
  • 接口测试的用例其实也可以用来兼做简单的压力测试,而压力测试需要并发
  • 接口测试的用例有很多重复的东西,测试人员应该只需要关注接口测试的设计,这些重复劳动最好自动化来做
  • pytest和allure太好用了,新框架要集成它们
  • 接口测试的用例应该尽量简洁,最好用yaml,这样数据能直接映射为请求数据,写起用例来跟做填空题一样,便于向没有自动化经验的成员推广 加上我对Python的协程很感兴趣,也学了一段时间,一直希望学以致用,所以http请求我决定用aiohttp来实现。 但是pytest是不支持事件循环的,如果想把它们结合还需要一番功夫。于是继续思考,思考的结果是其实我可以把整个事情分为两部分。 第一部分,读取yaml测试用例,http请求测试接口,收集测试数据。 第二部分,根据测试数据,动态生成pytest认可的测试用例,然后执行,生成测试报告。 这样一来,两者就能完美结合了,也完美符合我所做的设想。想法既定,接着 就是实现了。

目录

第一部分(整个过程都要求是异步非阻塞的)

第二部分

后续(yml测试文件自动生成)

第一部分(整个过程都要求是异步非阻塞的)

读取yaml测试用例

一份简单的用例模板我是这样设计的,这样的好处是,参数名和aiohttp.ClientSession().request(method,url,**kwargs)是直接对应上的,我可以不费力气的直接传给请求方法,避免各种转换,简洁优雅,表达力又强。

args:
  - post
  - /xxx/add
kwargs:
  -
    caseName: 新增xxx
    data:
      name: ${gen_uid(10)}
validator:
  -
    json:
      successed: True

异步读取文件可以使用aiofiles这个第三方库,yaml_load是一个协程,可以保证主进程读取yaml测试用例时不被阻塞,通过await yaml_load()便能获取测试用例的数据

async def yaml_load(dir='', file=''):
    """
    异步读取yaml文件,并转义其中的特殊值
    :param file:
    :return:
    """
    if dir:
        file = os.path.join(dir, file)
    async with aiofiles.open(file, 'r', encoding='utf-8', errors='ignore') as f:
        data = await f.read()

    data = yaml.load(data)

    # 匹配函数调用形式的语法
    pattern_function = re.compile(r'^\${([A-Za-z_]+\w*\(.*\))}$')
    pattern_function2 = re.compile(r'^\${(.*)}$')
    # 匹配取默认值的语法
    pattern_function3 = re.compile(r'^\$\((.*)\)$')

    def my_iter(data):
        """
        递归测试用例,根据不同数据类型做相应处理,将模板语法转化为正常值
        :param data:
        :return:
        """
        if isinstance(data, (list, tuple)):
            for index, _data in enumerate(data):
                data[index] = my_iter(_data) or _data
        elif isinstance(data, dict):
            for k, v in data.items():
                data[k] = my_iter(v) or v
        elif isinstance(data, (str, bytes)):
            m = pattern_function.match(data)
            if not m:
                m = pattern_function2.match(data)
            if m:
                return eval(m.group(1))
            if not m:
                m = pattern_function3.match(data)
            if m:
                K, k = m.group(1).split(':')
                return bxmat.default_values.get(K).get(k)

            return data

    my_iter(data)

    return BXMDict(data)

可以看到,测试用例还支持一定的模板语法,如${function}$(a:b)等,这能在很大程度上拓展测试人员用例编写的能力

http请求测试接口

http请求可以直接用aiohttp.ClientSession().request(method,url,**kwargs),http也是一个协程,可以保证网络请求时不被阻塞,通过await http()便可以拿到接口测试数据

async def http(domain, *args, **kwargs):
    """
    http请求处理器
    :param domain: 服务地址
    :param args:
    :param kwargs:
    :return:
    """
    method, api = args
    arguments = kwargs.get('data') or kwargs.get('params') or kwargs.get('json') or {}

    # kwargs中加入token
    kwargs.setdefault('headers', {}).update({'token': bxmat.token})
    # 拼接服务地址和api
    url = ''.join([domain, api])

    async with ClientSession() as session:
        async with session.request(method, url, **kwargs) as response:
            res = await response_handler(response)
            return {
                'response': res,
                'url': url,
                'arguments': arguments
            }

收集测试数据

协程的并发真的很快,这里为了避免服务响应不过来导致熔断,可以引入asyncio.Semaphore(num)来控制并发

async def entrace(test_cases, loop, semaphore=None):
    """
    http执行入口
    :param test_cases:
    :param semaphore:
    :return:
    """
    res = BXMDict()
    # 在CookieJar的update_cookies方法中,如果unsafe=False并且访问的是IP地址,客户端是不会更新cookie信息
    # 这就导致session不能正确处理登录态的问题
    # 所以这里使用的cookie_jar参数使用手动生成的CookieJar对象,并将其unsafe设置为True
    async with ClientSession(loop=loop, cookie_jar=CookieJar(unsafe=True), headers={'token': bxmat.token}) as session:
        await advertise_cms_login(session)
        if semaphore:
            async with semaphore:
                for test_case in test_cases:
                    data = await one(session, case_name=test_case)
                    res.setdefault(data.pop('case_dir'), BXMList()).append(data)
        else:
            for test_case in test_cases:
                data = await one(session, case_name=test_case)
                res.setdefault(data.pop('case_dir'), BXMList()).append(data)

        return res


async def one(session, case_dir='', case_name=''):
    """
    一份测试用例执行的全过程,包括读取.yml测试用例,执行http请求,返回请求结果
    所有操作都是异步非阻塞的
    :param session: session会话
    :param case_dir: 用例目录
    :param case_name: 用例名称
    :return:
    """
    project_name = case_name.split(os.sep)[1]
    domain = bxmat.url.get(project_name)
    test_data = await yaml_load(dir=case_dir, file=case_name)
    result = BXMDict({
        'case_dir': os.path.dirname(case_name),
        'api': test_data.args[1].replace('/', '_'),
    })
    if isinstance(test_data.kwargs, list):
        for index, each_data in enumerate(test_data.kwargs):
            step_name = each_data.pop('caseName')
            r = await http(session, domain, *test_data.args, **each_data)
            r.update({'case_name': step_name})
            result.setdefault('responses', BXMList()).append({
                'response': r,
                'validator': test_data.validator[index]
            })
    else:
        step_name = test_data.kwargs.pop('caseName')
        r = await http(session, domain, *test_data.args, **test_data.kwargs)
        r.update({'case_name': step_name})
        result.setdefault('responses', BXMList()).append({
            'response': r,
            'validator': test_data.validator
        })

    return result

事件循环负责执行协程并返回结果,在最后的结果收集中,我用测试用例目录来对结果进行了分类,这为接下来的自动生成pytest认可的测试用例打下了良好的基础

def main(test_cases):
    """
    事件循环主函数,负责所有接口请求的执行
    :param test_cases:
    :return:
    """
    loop = asyncio.get_event_loop()
    semaphore = asyncio.Semaphore(bxmat.semaphore)
    # 需要处理的任务
    # tasks = [asyncio.ensure_future(one(case_name=test_case, semaphore=semaphore)) for test_case in test_cases]
    task = loop.create_task(entrace(test_cases, loop, semaphore))
    # 将协程注册到事件循环,并启动事件循环
    try:
        # loop.run_until_complete(asyncio.gather(*tasks))
        loop.run_until_complete(task)
    finally:
        loop.close()

    return task.result()

第二部分

动态生成pytest认可的测试用例

首先说明下pytest的运行机制,pytest首先会在当前目录下找conftest.py文件,如果找到了,则先运行它,然后根据命令行参数去指定的目录下找test开头或结尾的.py文件,如果找到了,如果找到了,再分析fixture,如果有session或module类型的,并且参数autotest=True或标记了pytest.mark.usefixtures(a...),则先运行它们;再去依次找类、方法等,规则类似。大概就是这样一个过程。
可以看出,pytest测试运行起来的关键是,必须有至少一个被pytest发现机制认可的testxx.py文件,文件中有TestxxClass类,类中至少有一个def testxx(self)方法。
现在并没有任何pytest认可的测试文件,所以我的想法是先创建一个引导型的测试文件,它负责让pytest动起来。可以用pytest.skip()让其中的测试方法跳过。然后我们的目标是在pytest动起来之后,怎么动态生成用例,然后发现这些用例,执行这些用例,生成测试报告,一气呵成。

# test_bootstrap.py
import pytest

class TestStarter(object):

    def test_start(self):
        pytest.skip('此为测试启动方法, 不执行')

我想到的是通过fixture,因为fixture有setup的能力,这样我通过定义一个scope为session的fixture,然后在TestStarter上面标记use,就可以在导入TestStarter之前预先处理一些事情,那么我把生成用例的操作放在这个fixture里就能完成目标了。

# test_bootstrap.py
import pytest

@pytest.mark.usefixtures('te', 'test_cases')
class TestStarter(object):

    def test_start(self):
        pytest.skip('此为测试启动方法, 不执行')

pytest有个--rootdir参数,该fixture的核心目的就是,通过--rootdir获取到目标目录,找出里面的.yml测试文件,运行后获得测试数据,然后为每个目录创建一份testxx.py的测试文件,文件内容就是content变量的内容,然后把这些参数再传给pytest.main()方法执行测试用例的测试,也就是在pytest内部再运行了一个pytest!最后把生成的测试文件删除。注意该fixture要定义在conftest.py里面,因为pytest对于conftest中定义的内容有自发现能力,不需要额外导入。

# conftest.py
@pytest.fixture(scope='session')
def test_cases(request):
    """
    测试用例生成处理
    :param request:
    :return:
    """
    var = request.config.getoption("--rootdir")
    test_file = request.config.getoption("--tf")
    env = request.config.getoption("--te")
    cases = []
    if test_file:
        cases = [test_file]
    else:
        if os.path.isdir(var):
            for root, dirs, files in os.walk(var):
                if re.match(r'\w+', root):
                    if files:
                        cases.extend([os.path.join(root, file) for file in files if file.endswith('yml')])

    data = main(cases)

    content = """
import allure

from conftest import CaseMetaClass


@allure.feature('{}接口测试({}项目)')
class Test{}API(object, metaclass=CaseMetaClass):

    test_cases_data = {}
"""
    test_cases_files = []
    if os.path.isdir(var):
        for root, dirs, files in os.walk(var):
            if not ('.' in root or '__' in root):
                if files:
                    case_name = os.path.basename(root)
                    project_name = os.path.basename(os.path.dirname(root))
                    test_case_file = os.path.join(root, 'test_{}.py'.format(case_name))
                    with open(test_case_file, 'w', encoding='utf-8') as fw:
                        fw.write(content.format(case_name, project_name, case_name.title(), data.get(root)))
                    test_cases_files.append(test_case_file)

    if test_file:
        temp = os.path.dirname(test_file)
        py_file = os.path.join(temp, 'test_{}.py'.format(os.path.basename(temp)))
    else:
        py_file = var

    pytest.main([
        '-v',
        py_file,
        '--alluredir',
        'report',
        '--te',
        env,
        '--capture',
        'no',
        '--disable-warnings',
    ])

    for file in test_cases_files:
        os.remove(file)

    return test_cases_files

可以看到,测试文件中有一个TestxxAPI的类,它只有一个test_cases_data属性,并没有testxx方法,所以还不是被pytest认可的测试用例,根本运行不起来。那么它是怎么解决这个问题的呢?答案就是CaseMetaClass

function_express = """
def {}(self, response, validata):
    with allure.step(response.pop('case_name')):
        validator(response,validata)"""


class CaseMetaClass(type):
    """
    根据接口调用的结果自动生成测试用例
    """

    def __new__(cls, name, bases, attrs):
        test_cases_data = attrs.pop('test_cases_data')
        for each in test_cases_data:
            api = each.pop('api')
            function_name = 'test' + api
            test_data = [tuple(x.values()) for x in each.get('responses')]
            function = gen_function(function_express.format(function_name),
                                    namespace={'validator': validator, 'allure': allure})
            # 集成allure
            story_function = allure.story('{}'.format(api.replace('_', '/')))(function)
            attrs[function_name] = pytest.mark.parametrize('response,validata', test_data)(story_function)

        return super().__new__(cls, name, bases, attrs)

CaseMetaClass是一个元类,它读取test_cases_data属性的内容,然后动态生成方法对象,每一个接口都是单独一个方法,在相继被allure的细粒度测试报告功能和pytest提供的参数化测试功能装饰后,把该方法对象赋值给test+api的类属性,也就是说,TestxxAPI在生成之后便有了若干testxx的方法,此时内部再运行起pytest,pytest也就能发现这些用例并执行了。

def gen_function(function_express, namespace={}):
    """
    动态生成函数对象, 函数作用域默认设置为builtins.__dict__,并合并namespace的变量
    :param function_express: 函数表达式,示例 'def foobar(): return "foobar"'
    :return:
    """
    builtins.__dict__.update(namespace)
    module_code = compile(function_express, '', 'exec')
    function_code = [c for c in module_code.co_consts if isinstance(c, types.CodeType)][0]
    return types.FunctionType(function_code, builtins.__dict__)

在生成方法对象时要注意namespace的问题,最好默认传builtins.__dict__,然后自定义的方法通过namespace参数传进去。

后续(yml测试文件自动生成)

至此,框架的核心功能已经完成了,经过几个项目的实践,效果完全超过预期,写起用例来不要太爽,运行起来不要太快,测试报告也整的明明白白漂漂亮亮的,但我发现还是有些累,为什么呢?
我目前做接口测试的流程是,如果项目集成了swagger,通过swagger去获取接口信息,根据这些接口信息来手工起项目创建用例。这个过程很重复很繁琐,因为我们的用例模板已经大致固定了,其实用例之间就是一些参数比如目录、用例名称、method等等的区别,那么这个过程我觉得完全可以自动化。
因为swagger有个网页啊,我可以去提取关键信息来自动创建.yml测试文件,就像搭起架子一样,待项目架子生成后,我再去设计用例填传参就可以了。
于是我试着去解析请求swagger首页得到的HTML,然后失望的是并没有实际数据,后来猜想应该是用了ajax,打开浏览器控制台的时,我发现了api-docs的请求,一看果然是json数据,那么问题就简单了,网页分析都不用了。

import re
import os
import sys

from requests import Session

template ="""
args:
  - {method}
  - {api}
kwargs:
  -
    caseName: {caseName}
    {data_or_params}:
        {data}
validator:
  -
    json:
      successed: True
"""


def auto_gen_cases(swagger_url, project_name):
    """
    根据swagger返回的json数据自动生成yml测试用例模板
    :param swagger_url:
    :param project_name:
    :return:
    """
    res = Session().request('get', swagger_url).json()
    data = res.get('paths')

    workspace = os.getcwd()

    project_ = os.path.join(workspace, project_name)

    if not os.path.exists(project_):
        os.mkdir(project_)

    for k, v in data.items():
        pa_res = re.split(r'[/]+', k)
        dir, *file = pa_res[1:]

        if file:
            file = ''.join([x.title() for x in file])
        else:
            file = dir

        file += '.yml'

        dirs = os.path.join(project_, dir)

        if not os.path.exists(dirs):
            os.mkdir(dirs)

        os.chdir(dirs)

        if len(v) > 1:
            v = {'post': v.get('post')}
        for _k, _v in v.items():
            method = _k
            api = k
            caseName = _v.get('description')
            data_or_params = 'params' if method == 'get' else 'data'
            parameters = _v.get('parameters')

            data_s = ''
            try:
                for each in parameters:
                    data_s += each.get('name')
                    data_s += ': \n'
                    data_s += ' ' * 8
            except TypeError:
                data_s += '{}'

        file_ = os.path.join(dirs, file)

        with open(file_, 'w', encoding='utf-8') as fw:
            fw.write(template.format(
                method=method,
                api=api,
                caseName=caseName,
                data_or_params=data_or_params,
                data=data_s
            ))

        os.chdir(project_)

现在要开始一个项目的接口测试覆盖,只要该项目集成了swagger,就能秒生成项目架子,测试人员只需要专心设计接口测试用例即可,我觉得对于测试团队的推广使用是很有意义的,也更方便了我这样的懒人。

END配套学习资源分享

最后: 为了回馈铁杆粉丝们,我给大家整理了完整的软件测试视频学习教程,朋友们如果需要可以自行免费领取 【保证100%免费】

加入我的软件测试交流qq群:110685036免费获取~(同行大佬一起学术交流,每晚都有大佬直播分享技术知识点)

软件测试面试文档

我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

全套资料获取方式:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/619715.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Matlab论文插图绘制模板第100期—紧凑排列多子图(Tiledlayout)

不知不觉,《Matlab论文插图绘制模板》系列来到了第100期。 在此之前,其实我也没想到会有这么多种数据可视化表达方式,论文里不是折线图就是柱状图,单调的很。 假如研究生那会要是能遇到现在的自己(分享的内容&#x…

因果一致性

上一篇写到了一致性模型,而因果一致性模型比较复杂,故单独写一篇文章来记录 强一致性模型会在网络分区时变的不可用,而最终一致性模型放弃了safety,但同时也对系统可用性和性能产生明显的损害。上层要做些操作。于是有了一个折中…

高考作文AI大比拼「GPT-4 vs 文心一言 vs 通义千问」

2023 年 6 月 7 日上午,全国高考语文科目已经考试结束,第一时间拿到了全国甲卷的高考作文题目: 阅读下面的资料,根据需要写作 人们因技术发展得更好地掌控时间,但也有人因此成为了时间的仆人。 这句话引出了你怎样的联…

备战金九银十:1200道Java面试真题合集,助你搞定面试官

不论是校招还是社招都避免不了各种面试。笔试,如何去准备这些东西就显得格外重要。不论是笔试还是面试都是有章可循的,我这个有章可循‘说的意思只是说应对技术面试是可以提前准备。 运筹帷幄之后,决胜千里之外!不打毫无准备的仗,我觉得大家…

爬虫数据采集需要什么样的代理ip以及遇到的反爬措施

随着互联网的快速发展,数据已经成为许多行业中的重要资源。网络爬虫作为一种数据采集工具,在许多领域中得到了广泛应用。但是现在很多网站都有非常多的限制,所以在爬取数据的时候,还需要借助代理ip来助力,才能更好的完…

OKHttp_官方文档[译文]

OKHttp功能类介绍 OKHttp网络请求流程分析 OKHttp连接池 OKHttp分发器 OKHttp拦截器 RetryAndFollowUpInterceptorBridgeInterceptorCacheInterceptorConnectInterceptorCallServerInterceptor 总览 OkHttp HTTP是现代应用程序网络的方式。这就是我们交换数据和媒体的方…

Tcp黏包和半包形象讲解以及结合Netty应用层的解决方案

黏包:顾名思义就是好几次的请求消息粘在了一起 半包:顾名思义就是一个消息分成了好几半发送出去 首先讲解这两种现象出现的原因: 1.大家都知道tcp是一个可靠的网络协议,每发送一段消息,就要进行一次,确认应答(ack处…

5.41 综合案例2.0-modbus协议控制变送器和六路继电器

modbus协议控制变送器和六路继电器 案例说明1.器件光照温湿度变送器六路继电器 2.测试前操作3.连线 代码测试 案例说明 基于modbus协议,本案例实现了下述功能:  (1)采集和上报温度、湿度、光照数据  (2)…

安全防御 --- IPSec理论(02)

附: 协议与模式分类 esp 和 ah 的分类: 数据的安全性:ESP有机密性;AH无机密性场景:ESP适合公网场景;AH适合内网 / 私网场景 (数据的安全性主要依赖于传输端之间需要做认证) 传输…

MyBatisPlus4-DML编程控制(增删改)、id生成策略、逻辑删除、乐观锁和悲观锁

1. id生成策略控制(增) 名称: TableId 类型: 属性注解 位置: 模型类中用于表示主键的属性定义上方 作用: 设置当前类中主键属性的生成策略 public class User {TableId(type IdType.AUTO)private Long id; }value: 设置数据库主键名称 type: 设置主键属…

vue完美模拟pc版快手实现短视频,含短视频详情播放

目录 一、预览 二、效果图 项目实现的demo效果图: 三、项目细节说明 1.项目结构、设计说明 2.项目可拓展能力题外话(看不懂可以忽略) 3.项目路由配置 4.框架布局页面源码 5.首页实现 四、总结 一、预览 本作品demo预览地址&#xff1…

测试工程师该何去何从?写给30+岁的测试工程师!

前言: 软件测试是为了发现程序中的错误而执行程序的过程。 通俗的说,软件测试需要在发布软件之前,尽可能的找软件的错误,尽量避免在发布之后给用户带来不好的体验,并要满足用户使用的需求。 首先今年行情肯定比去年好…

【Java|多线程与高并发】线程的中断的两种方法

文章目录 1.前言2. 方法1: 自定义标志位3. 方法2:使用标准库自带的标志位4.总结 1.前言 线程中断是指在一个线程执行的过程中,强制终止该线程的执行。虽说是中断,但本质上是让run方法快点执行完,而不是run方法执行到一半,强制结束. 本文主要介绍线程中断的两种方法…

电力通信机房如何管理?你绝对想不到!

在信息化建设中,机房运行是信息交换管理的核心。机房内的所有设备必须始终正常工作,否则一旦某个设备出现故障,就会对数据传输、存储和系统运行造成威胁,进而影响全局系统的运行。 机房内的3大安全隐患 01.典型的事故包括电气、消…

HighCharts图表的呈现

HighCharts用法说明地址:Highcharts API 文档 | Highcharts 通过地址打开会出现新版,也可以切换到旧版,以上图是旧版,旧版有详细的备注更方便使用 大致的界面呈现上方提供的地址可以实现,在这个地方主要说明几个注意点…

耗时108天,终于有人把金九银十面试必问的1309道Java面试题全部整理出来了

就目前大环境来看,跳槽成功的难度比往年高很多。一个明显的感受:互联网行业竞争越来越严峻,面试也是越来越难,不少大厂,如阿里、腾讯、华为的招聘名额明显减少,面试门槛却一再拔高,其实&#xf…

AI安防视频融合平台EasyCVR服务启动异常的原因排查与解决

EasyCVR视频融合平台基于云边端一体化架构,具有强大的数据接入、处理及分发能力,平台支持多协议、多类型的设备接入,包括主流标准协议国标GB28181、RTSP/Onvif、RTMP等,以及厂家私有协议与SDK接入,包括海康Ehome、海大…

求子网掩码的有效地址

第一步&#xff1a;通过题目可以得知&#xff0c;这个子网掩码属于C类&#xff0c;故ABCD四个选项&#xff0c;我们只需要看最后一位 第二步&#xff1a;题干给的是224&#xff08;我们只需要知道哪8位二进制数加起来等于224即可&#xff09; 很明显这个192<224&#xff1b…

在线时间戳在代码签名中起什么作用?

代码签名为可执行文件提供完整性证明&#xff0c;确保它们未被修改或损坏。许多现代操作系统需要代码签名机制&#xff0c;以保护其用户免受未知来源或没有真实性保证的软件代码的侵害。与HTTPS类似&#xff0c;证书颁发机构创建的受信任证书颁发给软件开发者&#xff0c;由软件…