基于深度学习的高精度人体摔倒行为检测识别系统(PyTorch+Pyside6+YOLOv5模型)

news2024/12/23 18:38:19

摘要:基于深度学习的高精度人体摔倒行为检测识别系统可用于日常生活中或野外来检测与定位人体摔倒行为目标,利用深度学习算法可实现图片、视频、摄像头等方式的人体摔倒行为目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括人体摔倒行为训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本人体摔倒行为检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度人体摔倒行为识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载YOLOv5源码库,放到自己电脑的目录,之后打开cmd进入到YOLOv5目录里面,本文演示的目录是:D:\vscode_workspace\yolov5
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。

在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的人体摔倒行为数据集手动标注了人体摔倒这1个类别,数据集总计4367张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的人体摔倒行为检测识别数据集包含训练集3642张图片,验证集925张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的人体摔倒行为数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对人体摔倒行为数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、挖土机、海洋生物、牙齿健康状况、血小板、浣熊、家禽猪、苹果检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/617271.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前端学习--Vue3.0(1)

1使用create-vue搭建Vue3项目 1.1 认识create-vue create-vue是Vue官方新的脚手架工具,底层切换到了 vite(下一代前端工具链),为开发提供极速响应 create-vue基于vite vue-cli基于webpack 1.2 创建项目 需要16.0及以上的node.j…

机器学习笔记:深度学习模型复杂度

1 时间复杂度(模型运算次数) 决定了模型的训练/预测时间用FLOPs指代 机器学习笔记:FLOPs_flop 机器学习_UQI-LIUWJ的博客-CSDN博客 2 空间复杂度(模型参数数量) 决定了模型的参数数量 2.1 全连接层参数量 包含bias…

EBU6304 Software Engineering 知识点总结_6 项目管理_下 Design Patterns

Design Patterns Decorator Design pattern 用于扩展系统功能的装饰模式。 比如我们有一个鸭子类,可以调用其鸭子叫的方法。我们初始化了一个鸭子对象,如何统计这个对象叫了几次,也就是其鸭子叫方法被调用了几次?记住OCP原则不…

mysql 在 linux下的安装 和 配置

文章目录 1. linux 安装mysql1. 源码安装1.找到源码包2: 进行配置3:初始化数据目录官方说明 自用4:启动数据库5:写入环境变量 2:使用yum安装1. 直接配置mysql仓库 或者下载MySQL Yum Repository2:安装启动进入mysql 3&…

整理推荐 6 个超好用的平面设计网站!

本文将为大家介绍了 6 个最佳学习平面设计的网站,包括即时设计、Behance、Awwwards、Dribbble、Designinspiration 和 Pinterest。选择学习平面设计网站需要考虑匹配自己的设计风格、是否具有局限性等,可以试用几个网站后选择最合适的。 1、即时设计 即…

我们投出去的简历为什么已读不回?来看面试官如何筛选简历、挑选求职者?

目录 前言: 应届生 1、看学历 2、看实习经历 3、看专业 职场人士 面试官喜欢问什么问题 总结 前言: 金三银四,是求职者蠢蠢欲动的季节,亦是企业摩拳擦掌的季节。 因为作为企业的一名金牌面试官,我收到的内推…

RK1126 C++ yolov5 6.2

基于 rk npu , 实现 yolov5 6.2 模型推理 实现过程 ⚡️​ 编译 opencv 需根据自己路径修改. cmake -D CMAKE_BUILD_TYPERELEASE \-D CMAKE_C_COMPILER./gcc-arm-8.3-2019.02-x86_64-arm-linux-gnueabihf/bin/arm-linux-gnueabihf-gcc \-D CMAKE_CXX_COMPILER./gc…

【Linux】多线程02 --- 线程的同步互斥问题及生产消费模型

🍎作者:阿润菜菜 📖专栏:Linux系统编程 目录 一、线程互斥1. 为什么要有共享资源临界保护? 2.理解加锁2.1 认识锁,使用锁 线程同步互斥问题是指多线程程序中,如何保证共享资源的正确访问和线程间…

阿里P8大佬七天七夜制作这份自动化核心知识点,错过了就是错过了

整理了一份自动化核心知识点。覆盖了web前端基础,HTML标签,CSS样式,自动化测试工具,webdriver环境搭建,元素定位,手机操作系统,移动自动化测试工具,自动化测试的流程与分类&#xff…

web自动化测试入门篇01——框架介绍

1. 目的 web自动化测试作为软件自动化测试领域中绕不过去的一个“香饽饽”,通常都会作为广大测试从业者的首选学习对象,相较于C/S架构的自动化来说,B/S有着其无法忽视的诸多优势,从行业发展趋、研发模式特点、测试工具支持&#x…

高完整性系统(7)Formal Verification and Validation

文章目录 Specification Process 规格化过程State Invariants案例check ... expect Alloy是一种用于构建和检查抽象模型的语言和工具。当Alloy说所有断言都成立时,这意味着你的模型或规格在给定范围内已成功通过了所有的断言检查。换句话说,对于你所定义…

SOLIDWORKS PDM 独立程序 C#

本主题介绍如何创建登录到 一个 SOLIDWORKS PDM Professional 文件库,并列出根文件夹中的文件。 启动Visual Studio.文件 > 新建 > 项目 > Visual C# > WPF(也可以使用WF) 输入程序名称选择存储路径确定在解决方案资源管理器中…

(学习日记)2023.06.06

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…

【Linux】基础文件IO、动静态库的制作和使用

基础IO 前言回顾C语言文件IO操作三个标准 系统文件I/O系统调用接口不带mode的open带mode的openwirtereadopen的第二个参数flagsopen返回值文件的管理0,1,2演示文件描述符的分配规则重定向C中的0、1、2输入重定向追加重定向 另一种重定向的方式dup2实现输…

MySQL5.7主从同步配置(一台master,两台slave)

1. 下载MySQL(5.7.42) rpm -ivh http://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpm2.安装 yum install mysql-server2.1 安装过程中如果报错如下,按下边方法处理。否则略过即可 2.2 解决方案:执行以下命令 rpm --import https…

mongodb redis mysql 区别

一、MySQL 关系型数据库。 在不同的引擎上有不同 的存储方式。 查询语句是使用传统的sql语句,拥有较为成熟的体系,成熟度很高。 开源数据库的份额在不断增加,mysql的份额页在持续增长。 缺点就是在海量数据处理的时候效率会显著变慢。 二、Mo…

Vue3中setup函数、以及父子组件传值讲解

文章目录 1.vue3中setup函数的执行时机2.setup函数的两种写法2.1 普通写法2.2 语法糖写法 3.vue3父组件给子组件传值。4.vue3子组件给父组件传值 1.vue3中setup函数的执行时机 setup选项的写法和执行时机,setup函数在beforeCreate函数之前执行,并且是自…

以安全为底线 共迎机遇和挑战|2023 开放原子全球开源峰会可信基础设施技术分论坛即将启幕

蚂蚁集团的业务领域,对于「可信」有非常高的技术要求。这种可信技术不仅体现在可靠、健壮,也体现在金融领域独有的风控难题以及分布式系统中持续提供服务的续航能力。可信基础设施中有大量的开源项目,而新的机会也在不断涌现。 2023 开放原子…

echarts 图表导出PDF(带滚动条)/图片导出PDF

echarts 图表导出PDF[带滚动条]/图片导出PDF 效果展示提出问题思考问题解决问题导出PDF 里面的页头中文乱码问题参数说明 效果展示 提出问题 在开发过程中,有需求是将展示出来的echarts图表导出为pdf 原本我的滚动条是使用echarts图表进行的滚动,但通过了解后得知,echarts图表如…

《人月神话》阅读推荐

用了两周的时间,大致过了一遍。书中讲述的很多方面可能此时并没有很深刻的体会,但是该书的预见性和分析还是很让人钦佩的。书中对项目、产品、程序、程序员等一系列对象的分析是相当精准的。虽然距今已有四十多年,但很多依旧在发生。   书中…