OpenGL 纹理

news2025/1/10 20:51:51

1.简介

纹理是一个2D图片(甚至也有1D和3D的纹理),它可以用来添加物体的细节;你可以想象纹理是一张绘有砖块的纸,无缝折叠贴合到你的3D的房子上,这样你的房子看起来就像有砖墙外表了。

为了能够把纹理映射(Map)到三角形上,我们需要指定三角形的每个顶点各自对应纹理的哪个部分。这样每个顶点就会关联着一个纹理坐标(Texture Coordinate),用来标明该从纹理图像的哪个部分采样。之后在图形的其它片段上进行片段插值(Fragment Interpolation)。 

纹理坐标在x和y轴上,范围为0到1之间(注意我们使用的是2D纹理图像)。使用纹理坐标获取纹理颜色叫做采样(Sampling)。纹理坐标起始于(0, 0),也就是纹理图片的左下角,终始于(1, 1),即纹理图片的右上角。下面的图片展示了我们是如何把纹理坐标映射到三角形上的。

纹理坐标看起来就像这样:

float texCoords[] = {
    0.0f, 0.0f, // 左下角
    1.0f, 0.0f, // 右下角
    0.5f, 1.0f // 上中
};

2.纹理环绕方式

纹理坐标的范围通常是从(0, 0)到(1, 1),如果我们把纹理坐标设置在范围之外,OpenGL默认的行为是重复这个纹理图像,但是提供了更多的选择。

环绕方式描述
GL_REPEAT对纹理的默认行为。重复纹理图像。
GL_MIRRORED_REPEAT和GL_REPEAT一样,但每次重复图片是镜像放置的。
GL_CLAMP_TO_EDGE纹理坐标会被约束在0到1之间,超出的部分会重复纹理坐标的边缘,产生一种边缘被拉伸的效果。
GL_CLAMP_TO_BORDER

超出的坐标为用户指定的边缘颜色

当纹理坐标超出默认范围时,每个选项都有不同的视觉效果输出。我们来看看这些纹理图像的例子:

每个选项都可以使用glTexParameter*函数对单独的一个坐标轴设置(st(如果是使用3D纹理那么还有一个r)它们和xyz是等价的):

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);

glTexParameteri参数简介:

  • 参数1指定了纹理目标;我们使用的是2D纹理,因此纹理目标是GL_TEXTURE_2D。
  • 参数2需要我们指定设置的选项与应用的纹理轴。我们打算配置的是WRAP选项,并且指定ST轴。
  • 参数3需要我们传递一个环绕方式(Wrapping),当前激活的纹理设定纹理环绕方式为GL_MIRRORED_REPEAT。

如果我们选择GL_CLAMP_TO_BORDER选项,我们还需要指定一个边缘的颜色。这需要使用glTexParameter函数的fv后缀形式,用GL_TEXTURE_BORDER_COLOR作为它的选项,并且传递一个float数组作为边缘的颜色值:

float borderColor[] = { 1.0f, 1.0f, 0.0f, 1.0f };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);

3.纹理过滤 

纹理坐标不依赖于分辨率,它可以是任意浮点值,所以OpenGL需要知道怎样将纹理像素映射到纹理坐标。当你有一个很大的物体但是纹理的分辨率很低的时候这就变得很重要了。我们只需要知道最重要的两种:GL_NEAREST和GL_LINEAR。

你可以想象你打开一张.jpg格式图片,不断放大你会发现它是由无数像素点组成的,这个点就是纹理像素;

GL_NEAREST(也叫邻近过滤,Nearest Neighbor Filtering)是OpenGL默认的纹理过滤方式。当设置为GL_NEAREST的时候,OpenGL会选择中心点最接近纹理坐标的那个像素。加号代表纹理坐标。左上角那个纹理像素的中心距离纹理坐标最近,所以它会被选择为样本颜色。

GL_LINEAR(也叫线性过滤,(Bi)linear Filtering)它会基于纹理坐标附近的纹理像素,计算出一个插值,近似出这些纹理像素之间的颜色。一个纹理像素的中心距离纹理坐标越近,那么这个纹理像素的颜色对最终的样本颜色的贡献越大。下图中你可以看到返回的颜色是邻近像素的混合色:

那么这两种纹理过滤方式有怎样的视觉效果呢?让我们看看在一个很大的物体上应用一张低分辨率的纹理会发生什么吧(纹理被放大了,每个纹理像素都能看到): 

GL_NEAREST产生了颗粒状的图案,我们能够清晰看到组成纹理的像素,而GL_LINEAR能够产生更平滑的图案,很难看出单个的纹理像素。

当进行放大(Magnify)和缩小(Minify)操作的时候可以设置纹理过滤的选项,比如你可以在纹理被缩小的时候使用邻近过滤,被放大时使用线性过滤。我们需要使用glTexParameter*函数为放大和缩小指定过滤方式。这段代码看起来会和纹理环绕方式的设置很相似:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

4.多级渐远纹理 

它简单来说就是一系列的纹理图像,后一个纹理图像是前一个的二分之一。多级渐远纹理背后的理念很简单:距观察者的距离超过一定的阈值,OpenGL会使用不同的多级渐远纹理,即最适合物体的距离的那个。由于距离远,解析度不高也不会被用户注意到。同时,多级渐远纹理另一加分之处是它的性能非常好。让我们看一下多级渐远纹理是什么样子的:

OpenGL有一个glGenerateMipmaps函数,在创建完一个纹理后调用它OpenGL就会承担接下来的所有工作了。就像普通的纹理过滤一样,切换多级渐远纹理级别时你也可以在两个不同多级渐远纹理级别之间使用NEAREST和LINEAR过滤。为了指定不同多级渐远纹理级别之间的过滤方式,你可以使用下面四个选项中的一个代替原有的过滤方式:

过滤方式描述
GL_NEAREST_MIPMAP_NEAREST使用最邻近的多级渐远纹理来匹配像素大小,并使用邻近插值进行纹理采样
GL_LINEAR_MIPMAP_NEAREST使用最邻近的多级渐远纹理级别,并使用线性插值进行采样
GL_NEAREST_MIPMAP_LINEAR在两个最匹配像素大小的多级渐远纹理之间进行线性插值,使用邻近插值进行采样
GL_LINEAR_MIPMAP_LINEAR在两个邻近的多级渐远纹理之间使用线性插值,并使用线性插值进行采样

就像纹理过滤一样,我们可以使用glTexParameteri将过滤方式设置为前面四种提到的方法之一:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

一个常见的错误是,将放大过滤的选项设置为多级渐远纹理过滤选项之一。这样没有任何效果,因为多级渐远纹理主要是使用在纹理被缩小的情况下的:纹理放大不会使用多级渐远纹理。

5.示例

此代码使用QT库。

#include "myopenglwidget.h"

//修改纹理坐标范围0~2
float vertices[] = {
//     ---- 位置 ----       ---- 颜色 ----     - 纹理坐标 -
     0.5f,  0.5f, 0.0f,   1.0f, 0.0f, 0.0f,   2.0f, 2.0f,   // 右上
     0.5f, -0.5f, 0.0f,   0.0f, 1.0f, 0.0f,   2.0f, 0.0f,   // 右下
    -0.5f, -0.5f, 0.0f,   0.0f, 0.0f, 1.0f,   0.0f, 0.0f,   // 左下
    -0.5f,  0.5f, 0.0f,   1.0f, 1.0f, 0.0f,   0.0f, 2.0f    // 左上
};

GLuint indices[] = {
    0, 1, 3,
    1, 2, 3
};

//顶点着色器语言
const GLchar* vertexShaderSource = "#version 330 core\n"
"layout (location = 0) in vec3 position;\n"
"layout (location = 1) in vec3 acolor;\n"
"layout (location = 2) in vec2 texCoord;\n"
"out vec3 outColor;\n"
"out vec2 outTexCoord;\n"
"void main()\n"
"{\n"
"gl_Position = vec4(position,1.0);\n"
"outColor = acolor;\n"
"outTexCoord = texCoord;\n"
"}\n\0";

//片段着色器语言
//texture函数会使用之前设置的纹理参数对相应的颜色值进行采样
//mix按一定的比例,混合两个纹理颜色
const GLchar* fragmentShaderSource = "#version 330 core\n"
"out vec4 color;\n"
"uniform sampler2D ourTexture;\n"
"in vec3 outColor;\n"
"in vec2 outTexCoord;\n"
"void main()\n"
"{\n"
"color = texture(ourTexture, outTexCoord);\n"
"}\n\0";

GLuint VBO, VAO,EBO;
GLuint shaderProgram;

MyOpenGLWidget::MyOpenGLWidget(QWidget *parent)
    : QOpenGLWidget(parent)
{

}

void MyOpenGLWidget::initializeGL()
{
    initializeOpenGLFunctions();

    //创建顶点着色器
    GLuint vertexShader;
    vertexShader = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);//第二参数指定了传递的源码字符串数量
    glCompileShader(vertexShader);

    //创建片段着色器
    GLuint fragmentShader;
    fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);//第二参数指定了传递的源码字符串数量
    glCompileShader(fragmentShader);

    //创建一个着色器程序
    shaderProgram = glCreateProgram();
    glAttachShader(shaderProgram, vertexShader);
    glAttachShader(shaderProgram, fragmentShader);
    glLinkProgram(shaderProgram);

    //使用完成后释放内存
    glDeleteShader(vertexShader);
    glDeleteShader(fragmentShader);

    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);

    glBindVertexArray(VAO);//绑定VAO
    glBindBuffer(GL_ARRAY_BUFFER, VBO);//顶点缓冲对象的缓冲类型是GL_ARRAY_BUFFER
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//把顶点数据复制到缓冲的内存中GL_STATIC_DRAW :数据不会或几乎不会改变。

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
    glEnableVertexAttribArray(0);

    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
    glEnableVertexAttribArray(1);

    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
    glEnableVertexAttribArray(2);

    glBindBuffer(GL_ARRAY_BUFFER, 0);

    glGenBuffers(1, &EBO);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    //创建纹理
    m_wall = new QOpenGLTexture(QImage("./awesomeface.png").mirrored());

    glBindVertexArray(0);//解绑VAO
}

void MyOpenGLWidget::paintGL()
{
    glClearColor(0.2f,0.3f,0.3f,1.0f);
    glClear(GL_COLOR_BUFFER_BIT);

    glUseProgram(shaderProgram);

    glBindVertexArray(VAO);//绑定VAO

    m_wall->bind();

    //设置纹理环绕方式
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);

    //设置纹理过滤
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

    glDrawElements(GL_TRIANGLES,6,GL_UNSIGNED_INT,0);

    glBindVertexArray(0);
}

void MyOpenGLWidget::resizeGL(int w, int h)
{

}

6.混合纹理 

#include "myopenglwidget.h"

GLfloat vertices[] = {
    // Positions
    0.5f,  0.5f, 0.0f,   1.0f, 0.0f, 0.0f,  1.0f, 1.0f,
    0.5f, -0.5f, 0.0f,   0.0f, 1.0f, 0.0f,   1.0f, -0.0f,
    -0.5f, -0.5f, 0.0f,   0.0f, 0.0f, 1.0f,   -0.0f, -0.0f,
    -0.5f,  0.5f, 0.0f,   1.0f, 1.0f, 0.0f,   -0.0f,1.0f
};

GLuint indices[] = {
    0, 1, 3,
    1, 2, 3
};

//顶点着色器语言
const GLchar* vertexShaderSource = "#version 330 core\n"
"layout (location = 0) in vec3 position;\n"
"layout (location = 1) in vec3 acolor;\n"
"layout (location = 2) in vec2 texCoord;\n"
"out vec3 outColor;\n"
"out vec2 outTexCoord;\n"
"void main()\n"
"{\n"
"gl_Position = vec4(position,1.0);\n"
"outColor = acolor;\n"
"outTexCoord = texCoord;\n"
"}\n\0";

//片段着色器语言
//texture函数会使用之前设置的纹理参数对相应的颜色值进行采样
//mix按一定的比例,混合两个纹理颜色
const GLchar* fragmentShaderSource = "#version 330 core\n"
"out vec4 color;\n"
"uniform sampler2D ourTexture1;\n"
"uniform sampler2D ourTexture2;\n"
"in vec3 outColor;\n"
"in vec2 outTexCoord;\n"
"void main()\n"
"{\n"
"color = mix(texture(ourTexture1, outTexCoord),texture(ourTexture2, vec2(1.0 - outTexCoord.x, outTexCoord.y)),0.5);\n"
"}\n\0";

GLuint VBO, VAO,EBO;
GLuint shaderProgram;

MyOpenGLWidget::MyOpenGLWidget(QWidget *parent)
    : QOpenGLWidget(parent)
{

}

void MyOpenGLWidget::initializeGL()
{
    initializeOpenGLFunctions();

    m_program = new QOpenGLShaderProgram();
    m_program->addShaderFromSourceCode(QOpenGLShader::Vertex,vertexShaderSource);
    m_program->addShaderFromSourceCode(QOpenGLShader::Fragment,fragmentShaderSource);
    m_program->link();

    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);

    glBindVertexArray(VAO);//绑定VAO
    glBindBuffer(GL_ARRAY_BUFFER, VBO);//顶点缓冲对象的缓冲类型是GL_ARRAY_BUFFER
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//把顶点数据复制到缓冲的内存中GL_STATIC_DRAW :数据不会或几乎不会改变。

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
    glEnableVertexAttribArray(0);

    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
    glEnableVertexAttribArray(1);

    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
    glEnableVertexAttribArray(2);

    glBindBuffer(GL_ARRAY_BUFFER, 0);

    glGenBuffers(1, &EBO);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    //加载纹理1、2
    m_wall = new QOpenGLTexture(QImage("./wall.jpg").mirrored());
    m_face = new QOpenGLTexture(QImage("./awesomeface.png").mirrored());

    m_program->bind();
    m_program->setUniformValue("ourTexture1",0);
    m_program->setUniformValue("ourTexture2",1);

    glBindVertexArray(0);//解绑VAO
}

void MyOpenGLWidget::paintGL()
{
    glClearColor(0.2f,0.3f,0.3f,1.0f);
    glClear(GL_COLOR_BUFFER_BIT);

    //glUseProgram(shaderProgram);
    m_program->bind();

    glBindVertexArray(VAO);//绑定VAO

    m_wall->bind(0);
    m_face->bind(1);

    glDrawElements(GL_TRIANGLES,6,GL_UNSIGNED_INT,0);
}

void MyOpenGLWidget::resizeGL(int w, int h)
{

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/613189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Day973.授权码许可类型中,为什么一定要有授权码? -OAuth 2.0

授权码许可类型中,为什么一定要有授权码? Hi,我是阿昌,今天学习的是auth2中为什么一定要有授权码的内容。 OAuth 2.0 的授权码许可类型,在小兔打单软件的例子里面,小兔最终是通过访问令牌请求到小明的店铺…

使用raspberry pi pico 制作红绿灯

需要的东西:一块面包版、一块raspberry pi pico、红绿黄led灯各一颗、220欧电阻3只、若干线 编程软件:thonny 操作系统:deepin 23 结果展示: 使用raspberry pi pico 制作红绿灯 from machine import Pin import utime yellowled…

4种整流电路和5种滤波电路

4种整流电路和5种滤波电路 基本电路:一般直流稳压电源都使用220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进行稳压,最终成为稳定的直流电源。这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有…

前端人必须知道的三种移动跨平台方案

跨平台技术是前端人必备技能,今天就来为大家解读一下近几年业界主流的三大移动端跨平台方案: Web 天然跨平台: Web App、PWA(Progressive Web Apps)、Hybrid App、PHA(Progress Hybrid App)都可…

Springboot自定义starter

文章目录 前言1.引入依赖1.1 json的转换1.2 xml转换依赖 2.定义Formate核心转化接口3.实现核心接口json和xml的转换3.1 json转换的实现3.2 xml转换的实现 4. FormatProperties类5.FormatAutoConfiguration 类配置6.提供一个MyFormatTemplate 模板类7.注册到springboot8.创建spr…

cavity开盖制作的辅助层别

cavity开盖工艺制作的辅助层别 数量:6个

suricata的flow流会话管理分析1

在《suricata中的线程管理分析》一文中,我们看到suricata中有FlowWorker和FlowManager两个线程来处理流表,说明流表的实现应该不简单,果然,看了流相关的这块代码后,发现确实有点复杂,代码估计得慢慢坑&…

[SpringMVC]Controller控制器、Interceptor拦截器、RestFul风格、异常处理、JSON数据格式与AJAX请求

文章目录 MVC理论基础配置环境并搭建项目Controller控制器配置视图解析器和控制器RequestMapping详解RequestParam和RequestHeader详解CookieValue和SessionAttrbutie重定向和请求转发Bean的Web作用域 RestFul风格Interceptor拦截器创建拦截器多级拦截器 异常处理JSON数据格式与…

C# Socket入门编程winform案例(附下载链接)

C# socket编程实现信息的接收(winform) 点我下载项目资源 服务器端: 第一步:建立一个用于通信的Socket对象 第二步:使用bind绑定IP地址和端口号 第三步:使用listen监听客户端 第四步:使用accep…

宝安西乡产业园变九年制学校,新增宅地、商地。

6月5日,宝安区城市更新和土地整备局发布《西乡街道盐田社区银田地块土地整备利益统筹项目土地整备规划(草案)》(以下简称草案)。 草案显示,该项目经过调整后: ● 新增一块二类居住用地&#xf…

王者荣耀战区活跃度排名怎么实现的?这篇文章给你答案!

🍉博客主页:阿博历练记 📖文章专栏:数据结构与算法 🚍代码仓库:阿博编程日记 🍥欢迎关注:欢迎友友们点赞收藏关注哦🌹 文章目录 🌈前言🍪堆的实现🔍1.堆的结构框架🔍2.堆…

通过ChatGPT打造10W+公众号文章

大家好,我是可夫小子,关注AIGC、读书和自媒体。解锁更多ChatGPT、AI绘画玩法。加:keeepdance,备注:chatgpt。 这是一篇非常具有实操性的指南,可能会动到一些某些行业人的蛋糕,但我无益于此。我是…

pnpm的安装和使用

1 安装 1.1 安装教程 npm全局安装pnpm npm install -g pnpm设置镜像地址 获取当前配置的镜像地址 pnpm get registry设置新的镜像地址 pnpm set registry https://registry.npm.taobao.org设置包存放地址 pnpm config set store-dir E:/xxx1.2 安装问题 当在vscode上使用…

在labview里使用LabSQL连接ACCESS数据库

使用LabSQL连接ACCESS数据库 写在前面ODBC数据源管理器的配置LV软件里使用结束 写在前面 ACCESS数据库一般包含在Office组件里,安装完Office后就可以直接拿来使用,要求不高的场合适合使用。 LabSQL工具包直接放进LV的安装目录下,打开软件后在…

SpringBootWeb案例-1(下: 来源黑马程序员)

3. 员工管理 完成了部门管理的功能开发之后,我们进入到下一环节员工管理功能的开发。 基于以上原型,我们可以把员工管理功能分为: 分页查询带条件的分页查询删除员工新增员工修改员工 3.1 分页查询 3.1.1 基础分页 3.1.1.1 需求分析 我…

YOLOV8 Onnxruntime Opencv DNN C++部署

1.Opencv介绍 OpenCV由各种不同组件组成。OpenCV源代码主要由OpenCV core(核心库)、opencv_contrib和opencv_extra等子仓库组成。近些年,OpenCV的主仓库增加了深度学习相关的子仓库:OpenVINO(即DLDT, Deep Learning Deployment Toolkit)、open_model_zoo,以及标注工具CV…

C++标准模板库 队列容器的使用

队列:在数据结构中也成为操作受限的线性表,是一种只允许在表的一端插入,在另一端删除的线性表 特点:先进先出,像打饭《排在最前面的先买,后到的排在队尾,即删除在队头,插入在队尾》…

面试测试工程师,都要考察什么?

今年刚接触了(功能)测试工程师的面试工作,有遇到对信贷业务流程较熟悉的、工作内容纯测试app功能的、什么都接触过但是不够深入的,发现简历上写的东西和实际真的有点差距,面试也是一个艺术活。 如果你想学习自动化测试…

Security Onion(安全洋葱)开源入侵检测系统(ids)安装

文章目录 Security Onion介绍安装配置(最低)安装步骤web界面 Security Onion介绍 Security Onion是一款专为入侵检测和NSM(网络安全监控)设计的Linux发行版。其安装过程很简单,在短时间内就可以部署一套完整的NSM收集、检测和分析的套件。Se…

高完整性系统(6)Alloy核心语法 + 有限状态机(Finite State Machines);check assertion amination

文章目录 Alloy 核心内容sig数据类型varonefactpre-conditionfunpred 谓词谓词的构成谓词的结果 / 普通条件约束和 pre-post condition 的区别 Finite State Machines 有限状态机FSM in Alloy Check Specification动画(Animation):run 关键字…