LeetCode198.打家劫舍
动态规划五部曲:
1,确定dp数组(dp table)以及下标的含义:dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
2,确定递推公式:决定dp[i]的因素就是第i房间偷还是不偷。如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点)然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
3,dp数组如何初始化:从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]。从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);
4,确定遍历顺序:dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!
5,举例推导dp数组:以示例二,输入[2,7,9,3,1]为例。
Java代码如下:
public int rob(int[] nums) {
if (nums == null || nums.length == 0) return 0;
if (nums.length == 1) return nums[0];
int[] dp = new int[nums.length];
dp[0] = nums[0];
dp[1] = Math.max(dp[0], nums[1]);
for (int i = 2; i < nums.length; i++) {
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
}
return dp[nums.length - 1];
}
LeetCode213.打家劫舍II
基本思路:这道题目与打家劫舍1的区别就是成环了。
对于一个数组,成环的话主要有如下三种情况:
情况一:考虑不包含首尾元素:
情况二:考虑包含首元素,不包含尾元素1
情况三:考虑包含尾元素,不包含首元素
注意这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。剩下的就和打家劫舍1一样了。
Java代码如下:
public int rob(int[] nums) {
if (nums == null || nums.length == 0)
return 0;
int len = nums.length;
if (len == 1)
return nums[0];
return Math.max(robAction(nums, 0, len - 1), robAction(nums, 1, len));
}
int robAction(int[] nums, int start, int end) {
int x = 0, y = 0, z = 0;
for (int i = start; i < end; i++) {
y = z;
z = Math.max(y, x + nums[i]);
x = y;
}
return z;
}
LeetCode337.打家劫舍III
和前两题的区别就是变成了树
动态规划五部曲:
1,确定递归函数的参数和返回值:这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。其实这里的返回数组就是dp数组。所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。所以本题dp数组就是一个长度为2的数组!长度为2的数组怎么标记树中每个节点的状态呢?别忘了在递归的过程中,系统栈会保存每一层递归的参数。
2,确定终止条件:在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回。
3,确定遍历顺序:首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。通过递归左节点,得到左节点偷与不偷的金钱。通过递归右节点,得到右节点偷与不偷的金钱。
4,确定单层递归的逻辑:如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)。如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:
val2 = max(left[0], left[1]) + max(right[0], right[1]);
最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}。
5,举例推导dp数组:以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)
最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱。
Java代码如下:
public int rob(TreeNode root) {
int[] res = robAction1(root);
return Math.max(res[0], res[1]);
}
int[] robAction1(TreeNode root) {
int res[] = new int[2];
if (root == null)
return res;
int[] left = robAction1(root.left);
int[] right = robAction1(root.right);
res[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
res[1] = root.val + left[0] + right[0];
return res;
}