论文地址:https://arxiv.org/abs/1911.11907
代码地址:https://github.com/huawei-noah/ghostnet
由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络(CNN)很困难。特征图中的冗余是那些成功的神经网络的重要特征,但在神经架构设计中很少研究。本文提出了一种新的Ghost
模块,以从廉价的操作中生成更多的特征图。基于一组内在特征图,我们以低成本应用一系列线性变换来生成许多重影特征图,这些重影特征可以充分揭示内在特征的信息。所提出的Ghost
模块可以作为即插即用组件来升级现有的卷积神经网络。Ghost
瓶颈被设计为堆叠Ghost
模块,然后可以轻松地建立轻量级GhostNet
。在基准上进行的实验表明,所提出的Ghost模块是基线模型中卷积层的一个令人印象深刻的替代方案,并且我们的GhostNet
可以在ImageNet ILSVRC2012分类数据集上以类似的计算成本实现比MobileNetV3更高的识别性能(例如,75.7%的前1精度&#x