构建智能电商推荐系统:大数据实战中的Kudu、Flink和Mahout应用【上进小菜猪大数据】

news2024/11/17 13:45:27

上进小菜猪,沈工大软件工程专业,爱好敲代码,持续输出干货。

本文将介绍如何利用Kudu、Flink和Mahout这三种技术构建一个强大的大数据分析平台。我们将详细讨论这些技术的特点和优势,并提供代码示例,帮助读者了解如何在实际项目中应用它们。通过本文的指导,读者将能够掌握如何使用这些工具来处理大规模数据集,并进行智能分析。

在当今的信息时代,大数据分析成为了各行各业中不可或缺的一环。为了有效地处理海量数据并从中提取有价值的信息,我们需要依赖于强大的工具和技术。在本文中,我们将探讨Kudu、Flink和Mahout这三个在大数据领域广泛应用的技术,并演示如何将它们结合起来构建一个智能分析平台。
在这里插入图片描述

设计技术

  1. Kudu:快速分布式列存储系统 Kudu是一个高性能、可扩展的分布式列存储系统,专为大数据工作负载而设计。它提供了低延迟的数据写入和高吞吐量的数据读取,同时支持随机访问和快速分析。本节将介绍Kudu的主要特点,并提供一个代码示例,展示如何使用Kudu进行数据存储和查询。

  2. Flink:实时流处理引擎 Flink是一个强大的开源流处理引擎,支持高性能、低延迟的实时数据处理。它提供了丰富的API和库,能够处理包括批处理、流处理和迭代计算等多种数据处理场景。本节将介绍Flink的基本概念和核心特性,并演示如何使用Flink处理实时数据流。

  3. Mahout:机器学习和数据挖掘库 Mahout是一个用于机器学习和数据挖掘的开源库,提供了丰富的算法和工具,用于处理大规模数据集。它支持各种机器学习任务,包括聚类、分类、推荐和降维等。本节将介绍Mahout的常用算法和使用方法,并提供一个代码示例,展示如何使用Mahout进行数据挖掘和智能分析

    构建智能分析平台 本节将结合Kudu、Flink和Mahout,演示如何构建一个完整的智能分析平台。我们将介绍如何使用Kudu作为数据存储和查询引擎,Flink作为实时流处理引擎,以及Mahout作为机器学习和数据挖掘库。通过一个综合案例,我们将展示如何使用这些技术来处理大规模数据集,从中提取有价值的信息,并进行智能分析。

参考代码示例:

# 使用Kudu进行数据存储和查询示例
from kudu.client import Partitioning

# 连接到Kudu集群
client = kudu.connect(host='kudu.master', port=7051)

# 创建Kudu表
schema = kudu.schema([(name='id', type='int64'), (name='name', type='string')])
table = client.table('my_table')
client.create_table('my_table', schema, partitioning=Partitioning(hash_partitions=4, columns=['id']))

# 插入数据
session = client.new_session()
insert = table.new_insert({'id': 1, 'name': 'John'})
session.apply(insert)
session.flush()

# 查询数据
scanner = table.scanner()
scanner.add_predicate(kudu.Predicate.compare('id', '>', 0))
scanner.open()
for row in scanner.read_all():
    print(row)

# 使用Flink进行实时流处理示例
from flink.streaming.api.environment import StreamExecutionEnvironment
from flink.streaming.api.functions.source import SourceFunction
from flink.streaming.api.functions.sink import SinkFunction

# 创建执行环境
env = StreamExecutionEnvironment.get_execution_environment()

# 定义数据源
class MySource(SourceFunction):
    def run(self, ctx):
        while True:
            ctx.collect('Hello, World!')

    def cancel(self):
        pass

# 定义数据接收器
class MySink(SinkFunction):
    def invoke(self, value):
        print(value)

# 添加数据源和接收器
source = env.add_source(MySource())
sink = env.add_sink(MySink())

# 执行任务
env.execute()

# 使用Mahout进行数据挖掘和智能分析示例
from mahout.cf.taste.impl.model.file import FileDataModel
from mahout.cf.taste.impl.neighborhood import NearestNUserNeighborhood
from mahout.cf.taste.impl.recommender import GenericUserBasedRecommender
from mahout.cf.taste.similarity import PearsonCorrelationSimilarity

# 加载数据模型
model = FileDataModel(File("data.csv"))

# 计算用户相似度
similarity = PearsonCorrelationSimilarity(model)
neighborhood = NearestNUserNeighborhood(3, similarity, model)

# 构建推荐模型
recommender = GenericUserBasedRecommender(model, neighborhood, similarity)

# 获取用户推荐结果
recommendations = recommender.recommend(1, 5)
for recommendation in recommendations:
    print(recommendation)

实战案例:

智能电商推荐系统 在本节中,我们将以一个智能电商推荐系统的实战案例来展示如何使用Kudu、Flink和Mahout构建一个完整的大数据分析平台。

案例背景:

假设我们是一家电商公司,想要构建一个智能推荐系统,根据用户的购买历史和行为数据,为他们提供个性化的产品推荐。我们将使用Kudu作为数据存储和查询引擎,Flink作为实时流处理引擎,Mahout作为数据挖掘和推荐引擎。

步骤:

1.数据收集和存储: 首先,我们需要收集和存储用户的购买历史和行为数据。可以使用Kudu创建一个表来存储这些数据,包括用户ID、产品ID、购买时间等字段。通过Kudu的高吞吐量和低延迟特性,可以有效地处理大量的实时数据。

# 创建Kudu表
schema = kudu.schema([
    (name='user_id', type='int64'),
    (name='product_id', type='int64'),
    (name='purchase_time', type='timestamp')
])
table = client.table('purchase_history')
client.create_table('purchase_history', schema, partitioning=Partitioning(hash_partitions=4, columns=['user_id']))

2.实时数据流处理: 接下来,我们使用Flink来处理实时的购买数据流。我们可以从Kudu表中读取数据,并应用实时推荐算法,根据用户的购买行为生成实时推荐结果。最后,将推荐结果存储到另一个Kudu表中。

# 定义Flink任务
from flink.streaming.api.functions import ProcessFunction

class RealTimeRecommendation(ProcessFunction):
    def process_element(self, value, ctx):
        # 实时推荐算法逻辑
        user_id = value['user_id']
        recommendations = recommender.recommend(user_id, 5)
        for recommendation in recommendations:
            # 将推荐结果存储到Kudu表中
            insert = recommendations_table.new_insert({'user_id': user_id, 'product_id': recommendation.product_id})
            session.apply(insert)
        session.flush()

# 从Kudu表读取数据流
source = env.add_source(KuduSource(table))

# 应用实时推荐算法
stream = source.process(RealTimeRecommendation())

# 将推荐结果存储到Kudu表
sink = KuduSink(recommendations_table)
stream.add_sink(sink)

# 执行任务
env.execute()

数据挖掘和离线推荐: 除了实时推荐,我们还可以使用Mahout进行离线数据挖掘和推荐。通过分析用户的购买历史和行为数据,我们可以训练一个机器学习模型,为用户生成更准确的个性化推荐结果。这些结果可以定期更新,并存储在Kudu表中供实时推荐使用。

# 加载数据模型
model = FileDataModel(File("purchase_history.csv"))

# 计算用户相似度
similarity = PearsonCorrelationSimilarity(model)
neighborhood = NearestNUserNeighborhood(3, similarity, model)

# 构建推荐模型
recommender = GenericUserBasedRecommender(model, neighborhood, similarity)

# 获取用户推荐结果并存储到Kudu表
for user_id in users:
    recommendations = recommender.recommend(user_id, 5)
    for recommendation in recommendations:
        insert = recommendations_table.new_insert({'user_id': user_id, 'product_id': recommendation.product_id})
        session.apply(insert)
    session.flush()

通过以上步骤,我们完成了一个智能电商推荐系统的构建。Kudu用于数据的收集和存储,Flink用于实时数据流处理,Mahout用于离线数据挖掘和推荐。这个系统能够根据用户的购买历史和行为数据,为他们提供个性化的产品推荐,提高用户购买的准确性和满意度。

总结: 本文介绍了如何使用Kudu、Flink和Mahout构建一个智能分析平台,并通过一个智能电商推荐系统的实战案例进行了演示。这些技术在大数据领域具有广泛的应用,能够帮助我们处理大规模的数据集,并从中提取有价值的信息。通过学习和实践,读者可以更好地理解和应用这些技术,为自己的项目带来更高的效益和创新力。Kudu、Flink和Mahout这三种技术在大数据领域的应用,并演示了如何将它们结合起来构建一个智能分析平台。通过学习本文提供的代码示例,读者可以深入了解这些技术的工作原理和使用方法,并能够在实际项目中应用它们。随着大数据技术的不断发展,这些工具将为我们提供更多强大的功能,帮助我们更好地应对大规模数据分析的挑战。

希望这篇文章能够帮助您理解如何在大数据实战中使用Kudu、Flink和Mahout这些技术。通过深入学习和实践,您将能够应用这些工具来处理大规模数据集,并从中获得有价值的信息。祝您在大数据领域的实战中取得成功!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/611774.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据分析--Numpy初级(二)

Numpy初级 Numpy数组属性Numpy的routines函数 Numpy数组属性 Numpy数组的维数成为秩(rank),即轴的数量,一维数组的秩为1…。在Numpy中,每一个线性的数组称为是一个轴(axis),也就是维…

procomponents组件库采坑日记

ModalForm组件: const formRef useRef<any>();<ModalFormkey{51}title数据仓库formRef{formRef} // 用于获取表单数据autoFocusFirstInput // 自动对话框打开后&#xff0c;首个表单项自动获得焦点width"33%"modalProps{{ // 扩展ant modal属性destroyOnC…

电动力学专题:电磁场规范不变性与规范自由度

对称性&#xff0c;不变性&#xff0c;相对性&#xff0c;协变形 在现代物理学中常常被认为具有相同的含义&#xff08;好拗口&#xff09; 规范与规范的自由度 保证电磁场物理量不改变的情况下&#xff0c;有多组势可供选择&#xff0c;而每组势可以称为一个规范 规范不变性…

linux-动态库制作与使用

​​​​​​(6条消息) linux-静态库制作与使用_云的小站的博客-CSDN博客 目录 创建动态库 使用动态库 根据静态库创建时写的两个源文件&#xff0c;我们来制作动态库 创建动态库 根据这2个源文件和2个头文件我们来学习制作动态库。 我们先让编译两个源文件成.o文件,注意要…

vite技术揭秘--环境变量

目录 环境变量 生产环境替换 自定义环境变量 .env 文件 环境加载优先级 自定义环境变量 模式 TypeScript 的智能提示 在node环境里使用环境变量 前言 我们开发中不可避免的要根据环境变量来做一些逻辑分支&#xff0c;在vite中有两种实现方式&#xff0c;即define和.env…

MIT6.824 lab 1 小白实现过程

1.总体思路 构建一个简单的MapReduce系统&#xff0c;Coordinator线程用于分配任务&#xff08;包括Map任务和Reduce任务&#xff09;&#xff0c;Worker线程向Coordinator线程请求任务&#xff0c;要求所有map任务完成后才可以请求到reduce任务&#xff0c;否则的话这个worker…

Springboot +spring security,基于默认数据库模型实现授权

一.简介 上一篇文章中讲解了如何基于内存模型来实现授权&#xff0c;在这种模型里&#xff0c;用户的信息是保存在内存中的。但是&#xff0c;保存在内存中的信息&#xff0c;是无法持久化的&#xff0c;也就是程序一旦关闭&#xff0c;或者断电等情况发生&#xff0c;内存中的…

0基础学习VR全景平台篇第36篇:场景功能-导览

大家好&#xff0c;欢迎观看蛙色VR官方系列——后台使用课程&#xff01; 本期为大家带来蛙色VR平台&#xff0c;场景管理—导览功能操作。 功能位置示意 一、本功能将用在哪里&#xff1f; 导览&#xff0c;指给VR漫游作品预先设置好路线&#xff0c;并且可以自定义路线的旋…

DMBOK知识梳理for CDGA/CDGP——第三章数据治理

关 注gzh“大数据食铁兽” 回复“知识点”获取《DMBOK知识梳理for CDGA/CDGP》常考知识点&#xff08;第三章数据治理&#xff09; 第三章 数据治理 第三章在是CDGA|CDGP考试的重点考核章节之一&#xff0c;知识点比较密集&#xff0c;本章重点为语境关系图及数据治理概念…

初心不改凌云志 热血浇灌信仰花 《凭栏一片风云起》湖北卫视热力开播

浮光灼夏 御风而行&#xff0c; 由著名导演金琛执导&#xff0c; 胡一天、章若楠、王劲松 张晞临、张赫、林子璐领衔主演&#xff0c; 高伟光特邀出演的 年代战争剧《凭栏一片风云起》&#xff0c; 将于今晚19:30起&#xff0c; 登陆【湖北卫视】长江剧场。 电视剧《凭栏…

音乐人解密:究竟是如何一步一步成为音乐人的?

音乐人解密&#xff1a;究竟是如何一步一步成为音乐人的&#xff1f; 音乐是人类伟大的产物&#xff0c;近些年来越来越多的人都开始尝试学习音乐&#xff0c;成为一名音乐人。而艺术高考等途径也为许多想要学习音乐、成为职业歌手或者编曲师的人群提供了途径。然而想要成为一名…

初识EasyUI

2.1何为EasyUI. EasyUI的全称是“JQuery EasyUI”&#xff0c;是一种基于jQuery、Angular、Vue和React的用户界面的插件的集合&#xff0c;EasyUI的目标就是帮助web开发者更轻松的打造出功能丰富并且美观的UI界面。开发者不需要编写复杂的javascript&#xff0c;也不需要对css样…

【Protobuf速成指南】Win/Centos7下Protobuf安装教程

文章目录 安装教程一、Windows1.1 下载编译器1.2 配置PATH1.3 其他依赖项 二、Centos72.1 安装必要的工具2.2 下载安装包2.3 安装 安装教程 以版本为V21.11为例说明 一、Windows 1.1 下载编译器 下载地址&#xff1a;链接&#xff0c;一直往下翻找到 V21.11版本 win用户根据…

火爆全网,最全性能测试从0到1进阶总结,高阶内卷学习路线...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 例如&#xff1a;…

ArduPilot飞控开源代码之滤波设置

ArduPilot飞控开源代码之滤波设置 1. 源由2. 原理3. 调优3.1 ACC低通滤波 INS_ACCEL_FILTER3.2 GRYO低通滤波 INS_GYRO_FILTER3.3 陷波滤波 INS_HNTCH_ENABLE & INS_HNTC2_ENABLE 4. 总结5. 参考资料 1. 源由 对于飞控传感器来来说&#xff0c;振动噪声也是数据。 单纯从数…

yolov3

文章目录 前言一、主干网络darknet53二、从特征获取预测结果 前言 本文主要讲解yolov3的基本知识&#xff0c;如有错误请指出。 本文主要来自 博客1 博客2 一、主干网络darknet53 53是因为有53层。 1、darknet53没有使用pooling 来进行下采样&#xff0c;而是用一个33&…

电脑数据隐藏原因有哪些?电脑里隐藏的数据怎么恢复

电脑里隐藏的数据怎么恢复&#xff1f;电脑中的数据很容易被隐藏&#xff0c;这时候很多人可能会感到焦急和无助。不过不用担心&#xff0c;本文将为大家介绍三种方法&#xff0c;让你轻松找回被隐藏的数据&#xff01; ※电脑数据隐藏原因有哪些 电脑数据可能会隐藏&#xf…

100天精通Golang:全面掌握Go语言的旅程

&#x1f337; 博主 libin9iOak带您 Go to Golang Language.✨ &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &#x1f30a; 《I…

QLoRA:量化 LLM 的高效微调

此 repo 支持论文“QLoRA&#xff1a;量化 LLM 的高效微调”&#xff0c;旨在使对 LLM 研究的访问民主化。 QLoRA 使用bitsandbytes进行量化&#xff0c;并与 Hugging Face 的PEFT和transformers库集成。QLoRA 由华盛顿大学 UW NLP 小组的成员开发。 概述 我们介绍了 QLoRA&…

volatile - (C语言)

volatile关键字和const一样都是一种类型修饰符&#xff0c;用它修饰过的变量表示可以被某些编译器未知的因素更改&#xff0c;比如操作系统、硬件或者是其它线程等。 该关键字是不希望被编译器优化&#xff0c;从而达到稳定访问内存的目的。 示例代码&#xff1a; #include&…