STM32F407的PWM

news2025/1/10 13:16:43

文章目录

  • 32的PWM资源
  • PWM输出原理
    • 捕获/比较模式寄存器(TIMx_CCMR1/2)
    • 捕获/比较使能寄存器(TIMx_CCER)
    • 捕获/比较寄存器(TIMx_CCR1~4)
  • 库函数版本的PWM波输出
    • 开启 TIM3 时钟以及复用功能时钟置 ,配置 PB5 为复用输出
    • 设置 TIM3_CH2 重映射到 PB5 上
    • 初始化 TIM3, 设置 TIM3 的 的 ARR 和 PSC
    • 设置 TIM3_CH2 的PWM 模式能 ,使能 TIM3 的 CH2 输出
    • 使能 TIM3
    • 修改 TIM3_CCR2 来控制占空比
  • 实现定时器输出PWM波步骤
    • 开启 TIM3 时钟,配置 PB5 为复用输出
    • 设置 TIM3_CH2 重映射到 PB5 上
    • 设置 TIM3 的ARR 和PSC
    • 设置 TIM3_CH2 的PWM 模式
    • 使能 TIM3 的 的 CH2 输出,使能 TIM3
    • 修改 TIM3_CCR2 来控制占空比
  • 最终代码
  • F407通用Timer的PWM工作过程
    • F407的PWM资源
    • PWM输出原理
    • F103定时器端口重映射
    • F407库函数版本的PWM波输出
      • 开启TIM14和GPIO钟配时钟,配置PF9选择复用功能AF9(TIM14)输出
      • 初始化TIM14,设置TIM14的ARR和PSC
      • 设置TIM14_CH1的PWM模式,使能TIM14的CH1出输
        • TIM_OCMode
        • TIM_OutputState
        • TIM_OCPolarity
      • 代码及输出引脚
      • 使能输出捕获预装载寄存器
      • 使能自动重装载的预装载寄存器允许位
      • 使能 TIM14
      • 修改 TIM14_CCR1来控制占空比
      • 高级定时器
      • 主函数代码int main(void)
    • 最终代码

泉水

32的PWM资源

STM32 的定时器除了 TIM6 和 7。其他的定时器都可以用来产生 PWM 输出。

  • 高级定时器 TIM1 和 TIM8 可以同时产生多达 7 路的 PWM 输出。
  • 通用定时器也能同时产生多达 4路的 PWM 输出
  • STM32F407 最多可以同时产生 30 路 PWM 输出!

在这里插入图片描述

这里我们仅利用 TIM3的 CH2 产生一路 PWM 输出。
在这里插入图片描述

PWM输出原理

在这里插入图片描述

假定定时器工作在向上计数 PWM模式

  • 当 CNT<CCRx 时,输出 0
  • 当 CNT>=CCRx 时输出 1
  • 当 CNT 达到 ARR 值的时候,重新归零,然后重新向上计数,依次循环。

改变 CCRx 的值,就可以改变 PWM 输出的占空比,改变 ARR 的值,就可以改变 PWM 输出的频率。

除了上一章介绍的寄存器外,我们还
会用到 3 个寄存器,来控制 PWM 的。

  • 捕获/比较模式寄存器(TIMx_CCMR1/2)
  • 捕获/比较使能寄存器(TIMx_CCER)。用来使能PWM输出。
  • 捕获/比较寄存器(TIMx_CCR1~4)。用来控制CCRx。
    在这里插入图片描述先由PWM模式确定大于计数是有效电平还是小于计数是有效电平,然后再看有效电平是高有效还是低有效。
    在这里插入图片描述

捕获/比较模式寄存器(TIMx_CCMR1/2)

Capture compare mode register
该寄存器总共有 2 个,TIMx _CCMR1和 TIMx _CCMR2。

  • TIMx_CCMR1 控制 CH1 和 2
  • TIMx_CCMR2 控制 CH3 和 4。
    在这里插入图片描述

该寄存器的有些位在不同模式下,功能不一样
上图把寄存器分了 2层

  • 上面一层对应输出
  • 下面的则对应输入

模式设置位 OCxM,此部分由 3 位组成。
总共可以配置成 7 种模式

  • PWM 模式,所以这 3 位必须设置为 110/111。
  • 这两种PWM 模式的区别就是输出电平的极性相反。
    在这里插入图片描述

CCxS 用于设置通道的方向(输入/输出)默认设置为 0,就是设置通道作为输出使用。

捕获/比较使能寄存器(TIMx_CCER)

Capture compare enable register
该寄存器控制着各个输入输出通道的开关。
在这里插入图片描述
CCER:CC1P位:输入/捕获1输出极性。0:高电平有效,1:低电平有效。
CCER:CC1E位:输入/捕获1输出使能。0:关闭,1:打开

  • 要想PWM 从 IO 口输出,这个位必须设置为 1。

捕获/比较寄存器(TIMx_CCR1~4)

Capture compare register
该寄存器总共有 4 个,对应 4 个输通道 CH1~4。 在这里插入图片描述

在输出模式下,该寄存器的值与 CNT 的值比较。

  • 如果使用的是 TIM3的通道 2,需要修改 TIM3_CCR2 以实现脉宽控制 DS0 的亮度。

库函数版本的PWM波输出

开启 TIM3 时钟以及复用功能时钟置 ,配置 PB5 为复用输出

要使用 TIM3,我们必须先开启 TIM3 的时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //使能定时器 3 时钟
还要配置 PB5 为复用输出,这是因为 TIM3_CH2 通道将重映射到 PB5 上,此时,PB5属于复用功能输出。
库函数设置 AFIO 时钟的方法是:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); //复用时钟使能
设置 PB5 为复用功能输出的方法:GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出

设置 TIM3_CH2 重映射到 PB5 上

因为 TIM3_CH2 默认是接在 PA7 上的,所以我们需要设置 TIM3_REMAP 为部分重映射(通过 AFIO_MAPR 配置),让 TIM3_CH2 重映射到 PB5 上面。
在库函数函数里面设置重映射的函数是:
void GPIO_PinRemapConfig(uint32_t GPIO_Remap, FunctionalState NewState);

所以 TIM3 部分重映射的库函数实现方法是:
GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE);

初始化 TIM3, 设置 TIM3 的 的 ARR 和 PSC

设置 ARR 和 PSC 两个寄存器的值来控制输出 PWM 的周期。
当 PWM 周期太慢(低于 50Hz)的时候,我们就会明显感觉到闪烁了。
在库函数是通过 TIM_TimeBaseInit 函数实现的
调用的格式为:
TIM_TimeBaseStructure.TIM_Period = arr; //设置自动重装载值
TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置预分频值
TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数模式
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据指定的参数初始化 TIMx 的

设置 TIM3_CH2 的PWM 模式能 ,使能 TIM3 的 CH2 输出

接下来,我们要设置 TIM3_CH2 为 PWM 模式(默认是冻结的)
DS0 是低电平亮,当 CCR2 的值小的时候,DS0 就暗,CCR2 值大的时候,DS0 就亮
我们要通过配置 TIM3_CCMR1 的相关位来控制 TIM3_CH2 的模式。
在库函数中,PWM 通道设置是通过函数 TIM_OC1Init()~TIM_OC4Init()来设置的,不同的通道的设置函数不一样,这里我们使用的是通道 2,所以使用的函数是 TIM_OC2Init()。
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
这种初始化格式大家学到这里应该也熟悉了,所以我们直接来看看结构体 TIM_OCInitTypeDef的定义:
typedef struct
{
uint16_t TIM_OCMode;
uint16_t TIM_OutputState;
uint16_t TIM_OutputNState; */
uint16_t TIM_Pulse;
uint16_t TIM_OCPolarity;
uint16_t TIM_OCNPolarity;
uint16_t TIM_OCIdleState;
uint16_t TIM_OCNIdleState;
} TIM_OCInitTypeDef;
成员变量:
参数 TIM_OCMode 设置模式是 PWM 还是输出比较,这里我们是 PWM 模式。
参数 TIM_OutputState 用来设置比较输出使能,也就是使能 PWM 输出到端口。
参数 TIM_OCPolarity 用来设置极性是高还是低。
其他的参数 TIM_OutputNState,TIM_OCNPolarity,TIM_OCIdleState 和 TIM_OCNIdleState 是高级定时器 TIM1 和 TIM8 才用到的。
要实现我们上面提到的场景,方法是:
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择 PWM 模式 2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性高
TIM_OC2Init(TIM3, &TIM_OCInitStructure); //初始化 TIM3 OC2

使能 TIM3

在完成以上设置了之后,我们需要使能 TIM3。使能 TIM3 的方法前面已经讲解过:
TIM_Cmd(TIM3, ENABLE); //使能 TIM3

修改 TIM3_CCR2 来控制占空比

在经过以上设置之后,PWM 其实已经开始输出了,只是其占空比和频率都是固定的
通过修改 TIM3_CCR2 则可以控制 CH2 的输出占空比。
在库函数中,修改 TIM3_CCR2 占空比的函数是:
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2);
对于其他通道,分别有一个函数名字,函数格式为 TIM_SetComparex(x=1,2,3,4)。

实现定时器输出PWM波步骤

开启 TIM3 时钟,配置 PB5 为复用输出

要使用 TIM3,我们必须先开启 TIM3 的时钟(通过 APB1ENR 设置)
还要配置 PB5 为复用输出,这是因为 TIM3_CH2 通道将重映射到 PB5 上,此时,PB5 属于复用功能输出。
RCC->APB1ENR|=1<<1; //TIM3 时钟使能
GPIOB->CRL&=0XFF0FFFFF; //PB5 输出
GPIOB->CRL|=0X00B00000; //复用功能输出
RCC->APB2ENR|=1<<0; //开启辅助时钟

设置 TIM3_CH2 重映射到 PB5 上

因为 TIM3_CH2 默认是接在 PA7 上的,所以我们需要设置 TIM3_REMAP 为部分重映射(通过 AFIO_MAPR 配置),让 TIM3_CH2 重映射到 PB5 上面。

设置 TIM3 的ARR 和PSC

在开启了 TIM3 的时钟之后,我们要设置 ARR 和 PSC 两个寄存器的值来控制输出 PWM 的周期。
当 PWM 周期太慢(低于 50Hz)的时候,我们就会明显感觉到闪烁了。

设置 TIM3_CH2 的PWM 模式

接下来,我们要设置 TIM3_CH2 为 PWM 模式(默认是冻结的),因为我们的 DS0 是低电平亮
我们希望当 CCR2 的值小的时候,DS0 就暗,CCR2 值大的时候,DS0 就亮
所以我们要通过配置 TIM3_CCMR1 的相关位来控制 TIM3_CH2 的模式。

使能 TIM3 的 的 CH2 输出,使能 TIM3

在完成以上设置了之后,我们需要开启 TIM3 的通道 2 输出以及 TIM3。
前者通过TIM3_CCER1 来设置,是单个通道的开关
后者则通过 TIM3_CR1 来设置,是整个 TIM3 的总开关

修改 TIM3_CCR2 来控制占空比

最后,在经过以上设置之后,PWM 其实已经开始输出了,只是其占空比和频率都是固定的
通过修改 TIM3_CCR2 则可以控制 CH2 的输出占空比。继而控制 DS0 的亮度。

高级定时器虽然和通用定时器类似,但是高级定时器要想输出 PWM,必须还要设置一个MOE 位(TIMx_BDTR 的第 15 位),以使能主输出,否则不会输出 PWM!!

最终代码

在 timer.c 里面加入如下代码:

//TIM3 PWM 部分初始化
//PWM 输出初始化
//arr:自动重装值
//psc:时钟预分频数
void TIM3_PWM_Init(u16 arr,u16 psc)
{
//此部分需手动修改 IO 口设置
RCC->APB1ENR|=1<<1; //TIM3 时钟使能
RCC->APB2ENR|=1<<3; //使能 PORTB 时钟
GPIOB->CRL&=0XFF0FFFFF; //PB5 输出
GPIOB->CRL|=0X00B00000; //复用功能输出
RCC->APB2ENR|=1<<0; //开启辅助时钟
AFIO->MAPR&=0XFFFFF3FF; //清除 MAPR 的[11:10]
AFIO->MAPR|=1<<11; //部分重映像,TIM3_CH2->PB5
TIM3->ARR=arr; //设定计数器自动重装值
TIM3->PSC=psc; //预分频器不分频
TIM3->CCMR1|=7<<12; //CH2 PWM2 模式
TIM3->CCMR1|=1<<11; //CH2 预装载使能
TIM3->CCER|=1<<4; //OC2 输出使能
TIM3->CR1=0x0080; //ARPE 使能
TIM3->CR1|=0x01; //使能定时器 3
}

此部分代码包含了上面介绍的 PWM 输出设置的前 5 个步骤

F407通用Timer的PWM工作过程

在这里插入图片描述

F407的PWM资源

开发指南14.1,P214
在这里插入图片描述

PWM输出原理

在这里插入图片描述
在这里插入图片描述

假定定时器工作在向上计数 PWM模式
如上的 PWM示意图:

  • 当 CNT 值小于 CCRx 的时候,IO 输出低电平(0)
  • 当 CNT 值大于等于 CCRx 的时候,IO 输出高电平(1)
  • 当 CNT 达到 ARR 值的时候,重新归零,然后重新向上计数,依次循环。

改变 CCRx 的值,就可以改变 PWM 输出的占空比(高电平占一个周期的比例),改变 ARR 的值,就可以改变 PWM 输出的频率,这就是 PWM 输出的原理。

  • CCR1:捕获比较(值)寄存器(x=1,2,3,4):设置比较值。
  • CCMR1: OC1M[2:0]位:对于PWM方式下,用于设置PWM模式1【110】或者PWM模式2【111】
  • CCER:CC1P位:输入/捕获1输出极性。0:高电平有效,1:低电平有效。
  • CCER:CC1E位:输入/捕获1输出使能。0:关闭,1:打开。
    在这里插入图片描述

F103定时器端口重映射

要利用 TIM3 的 CH2 输出 PWM 来控制 DS0 的亮度,但是 TIM3_CH2 默认是接在 PA7上面的,而我们的 DS0 接在 PB5 上面。

如果普通 MCU,可能就只能用飞线把 PA7 飞到 PB5上来实现了,不过,我们用的是 STM32,它比较高级,可以通过重映射功能,把 TIM3_CH2 映射到 PB5 上。

STM32 的重映射控制是由复用重映射和调试 IO 配置寄存器(AFIO_MAPR)控制的
在这里插入图片描述

TIM3 的重映射,从上图可以看出,TIM3_REMAP 是由[11:10]这 2 个位控制的。TIM3_REMAP[1:0]重映射控制表:
在这里插入图片描述

默认条件下,TIM3_REMAP[1:0]为 00,是没有重映射的,所以 TIM3_CH1~TIM3_CH4 分别是接在 PA6、PA7、PB0 和 PB1 上的
想让 TIM3_CH2 映射到 PB5 上,则需要设置TIM3_REMAP[1:0]=10,即部分重映射,这里需要注意,此时 TIM3_CH1 也被映射到 PB4 上了。

F407库函数版本的PWM波输出

开启TIM14和GPIO钟配时钟,配置PF9选择复用功能AF9(TIM14)输出

库函数使能TIM14时钟的方法是:

	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM14,ENABLE);  	//TIM14时钟使能    
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE); 	//使能PORTF时钟	

要配置PF9引脚映射至AF9,复用为定时器14,调用的函数为:

GPIO_PinAFConfig(GPIOF,GPIO_PinSource9,GPIO_AF_TIM14); //GPIOF9复用为定时器14 

设置PF9为复用功能输出这里我们只列出GPIO初始化为复用功能的代码:

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;           //GPIOF9
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;        //复用功能
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;	//速度100MHz
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;      //推挽复用输出
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;        //上拉
	GPIO_Init(GPIOF,&GPIO_InitStructure);              //初始化PF9

LED代码

#ifndef __LED_H
#define __LED_H
#include "sys.h"
//LED 端口定义
#define LED0 PFout(9) // DS0
#define LED1 PFout(10)// DS1
void LED_Init(void);//初始化
#endif

初始化TIM14,设置TIM14的ARR和PSC

设置 ARR 和 PSC 两个寄存器的值来控制输出 PWM 的周期。
当 PWM 周期太慢(低于 50Hz)的时候,我们就会明显感觉到闪烁了。
在库函数是通过 TIM_TimeBaseInit 函数实现的
调用的格式为:

TIM_TimeBaseStructure.TIM_Prescaler=psc;  //定时器分频
	TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式
	TIM_TimeBaseStructure.TIM_Period=arr;   //自动重装载值
	TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; 
	
	TIM_TimeBaseInit(TIM14,&TIM_TimeBaseStructure);//初始化定时器14

设置TIM14_CH1的PWM模式,使能TIM14的CH1出输

接下来,我们要设置 TIM3_CH2 为 PWM 模式(默认是冻结的)

  • 通过配置 TIMx_CCMR1 的相关位来控制定时器通道的模式。

  • 在库函数中,PWM 通道设置是通过函数 TIM_OC1Init()~TIM_OC4Init()来设置的

这里使用的函数是TIM_OC1Init()。

void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)

看看结构体 TIM_OCInitTypeDef的定义:

typedef struct
{
uint16_t TIM_OCMode;
uint16_t TIM_OutputState;
uint16_t TIM_OutputNState; */
uint16_t TIM_Pulse;
uint16_t TIM_OCPolarity;
uint16_t TIM_OCNPolarity;
uint16_t TIM_OCIdleState;
uint16_t TIM_OCNIdleState;
} TIM_OCInitTypeDef;

TIM_OCMode

设置模式是 PWM 还是输出比较,这里我们是 PWM 模式。

TIM_OutputState

用来设置比较输出使能,也就是使能 PWM 输出到端口。

TIM_OCPolarity

用来设置极性是高还是低。

其他的参数 TIM_OutputNState,TIM_OCNPolarity,TIM_OCIdleState 和 TIM_OCNIdleState 是高级定时器 TIM1 和 TIM8 才用到的。

代码及输出引脚

TIM_OCInitTypeDef   TIM_OCInitStructure;  
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择模式PWM 
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性低 
TIM_OC1Init(TIM14, &TIM_OCInitStructure);   //根据T指定的参数初始化外设TIM1 4OC1

在这里插入图片描述
在这里插入图片描述这里需要纠正,通用定时器9-14,有的有2个通道,有的只有一个。

使能输出捕获预装载寄存器

TIM_OC1PreloadConfig(TIM14, TIM_OCPreload_Enable); 

使能自动重装载的预装载寄存器允许位

TIM_ARRPreloadConfig(TIM14,ENABLE);

使能 TIM14

在完成以上设置了之后,我们需要使能 TIM14。

TIM_Cmd(TIM14, ENABLE); //使能 TIM3

修改 TIM14_CCR1来控制占空比

在经过以上设置之后,PWM 其实已经开始输出了,只是其占空比和频率都是固定的。

修改TIM14_CCR1占空比的函数是:

void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare2)

对于其他通道,分别有一个函数名字,函数格式为 TIM_SetComparex(x=1,2,3,4)。

高级定时器

高级定时器虽然和通用定时器类似,但是高级定时器要想输出PWM,必须还要设置一个MOE位(TIMx_BDTR的第15位),以使能主输出,否则不会输出PWM。

 void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState) 

主函数代码int main(void)

{ 
	u16 led0pwmval=0;    
	u8 dir=1;
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置系统中断优先级分组2
	delay_init(168);  //初始化延时函数
	uart_init(115200);//初始化串口波特率为115200
 	TIM14_PWM_Init(500-1,84-1);	//84M/84=1Mhz的计数频率,重装载值500,所以PWM频率为 1M/500=2Khz.     
   while(1) //实现比较值从0-300递增,到300后从300-0递减,循环
	{
 		delay_ms(10);	 
		if(dir)led0pwmval++;//dir==1 led0pwmval递增
		else led0pwmval--;	//dir==0 led0pwmval递减 
 		if(led0pwmval>300)dir=0;//led0pwmval到达300后,方向为递减
		if(led0pwmval==0)dir=1;	//led0pwmval递减到0后,方向改为递增
 
		TIM_SetCompare1(TIM14,led0pwmval);	//修改比较值,修改占空比
	}
}

实现的效果是从亮到暗,从暗到亮。

最终代码

在 timer.c 里面加入如下代码:

//TIM3 PWM 部分初始化
//PWM 输出初始化
//arr:自动重装值
//psc:时钟预分频数
void TIM3_PWM_Init(u16 arr,u16 psc)
{
//此部分需手动修改 IO 口设置
RCC->APB1ENR|=1<<1; //TIM3 时钟使能
RCC->APB2ENR|=1<<3; //使能 PORTB 时钟
GPIOB->CRL&=0XFF0FFFFF; //PB5 输出
GPIOB->CRL|=0X00B00000; //复用功能输出
RCC->APB2ENR|=1<<0; //开启辅助时钟
AFIO->MAPR&=0XFFFFF3FF; //清除 MAPR 的[11:10]
AFIO->MAPR|=1<<11; //部分重映像,TIM3_CH2->PB5
TIM3->ARR=arr; //设定计数器自动重装值
TIM3->PSC=psc; //预分频器不分频
TIM3->CCMR1|=7<<12; //CH2 PWM2 模式
TIM3->CCMR1|=1<<11; //CH2 预装载使能
TIM3->CCER|=1<<4; //OC2 输出使能
TIM3->CR1=0x0080; //ARPE 使能
TIM3->CR1|=0x01; //使能定时器 3
}

此部分代码包含了上面介绍的 PWM 输出设置的前 5 个步骤

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/608746.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

对CT数据进行最小最大值归一化(Min-Max Normalization)和消除过暗过亮值处理

文章目录 PIL库的图像失真问题使用最小最大值归一化&#xff08;Min-Max Normalization&#xff09;预处理消除过暗过亮值pytorch中对tensor使用最小最大值归一化处理&#xff08;torchvision.transforms&#xff09; 我们在处理CT图像时&#xff08;以dcm格式为例&#xff09;…

全栈小程序开发路线

目录 个人心得&#xff1a; 我的学习路线 个人心得&#xff1a; 我擅长的是小程序开发和技术变现&#xff0c;从2021年至今开发上线20于个小程序&#xff0c;矩阵用户超过10万&#xff0c;变现10万左右。 以下是部分小程序截图&#xff0c;追风口做的小程序&#xff0c;基本…

「Win」Windows注册表介绍与操作

✨博客主页&#xff1a;何曾参静谧的博客 &#x1f4cc;文章专栏&#xff1a;「Win」Windows程序设计 相关术语 Windows的注册表&#xff1a;是一个重要的系统组件&#xff0c;用于存储操作系统和应用程序的配置信息。它类似于一个数据库&#xff0c;包含了各种键值对、参数、设…

Vue报错:Error: error:0308010C:digital envelope routines::unsupported解决

问题 node 环境 Node.js v18.14.2 使用npm start.出现以下报错 Error: error:0308010C:digital envelope routines::unsupported at new Hash (node:internal/crypto/hash:71:19) at Object.createHash (node:crypto:133:10) at module.exports (F:\RuoYi-Cloud\CourseSched…

SWAT模型系统学习(建模方法、实例应用、高级进阶)

目前&#xff0c;水环境问题逐渐成为制约社会经济和环境可持续发展的重要因素。根据国内外研究表明&#xff0c;受全球环境变化和经济快速发展的影响&#xff0c;面源污染已逐渐成为水环境污染的第一因素。但面源污染由于具有排放分散、隐蔽&#xff0c;排污随机、不确定、不易…

搜索算法(三) 回溯法

1.回溯法 回溯法可以理解成一种特殊的深度优先算法&#xff0c;比起普通的DFS&#xff0c;多了还原当前节点的一步。 修改当前节点、递归子节点、还原当前节点。 本质是一种试错的思想。 维基百科&#xff1a; 2.例题 1&#xff09; 力扣https://leetcode.cn/problems/pe…

树莓派安装系统

0. 实验准备 树莓派一个&#xff0c;TF卡&#xff08;4GB以上&#xff09;一个&#xff0c;读卡器一个 1. 使用官方提供的工具 在搜索引擎中搜索树莓派&#xff08;不要用百度&#xff0c;建议使用必应的国际版进行搜索&#xff09;&#xff0c;我这里直接放上树莓派官方超链…

深入篇【Linux】学习必备:理解【Linux软件包管理器】yum + yum的具体使用 + yum下载的有趣指令

这里写目录标题 Ⅰ.Linux软件包管理器yum①.什么是软件包/什么是yum②.linux的软件生态与yum源③.关于rzsz Ⅱ.yum基本指令①.查看软件②.安装软件③.卸载软件 Ⅲ.yum下载的好玩指令①.sl②.linux_logo③.elinks Ⅰ.Linux软件包管理器yum yum 是一个 Shell 前端软件包管理器。基…

C++ 多态 最详细图文+代码讲解

感谢各位 点赞 收藏 评论 三连支持 本文章收录于专栏【C进阶】 ❀希望能对大家有所帮助❀ 本文章由 风君子吖 原创 回顾 上篇文章&#xff0c;我们学习了继承的相关知识&#xff0c;详细解刨了继承中的各种细节&#xff0c;而本章内容将在继承的基础上学习多态 多态的概念…

Dreamweaver如何进行网页开发?

文章目录 0.引言1.安装Dreamweaver2.编写第一个网页 0.引言 笔者本科学习的编程语言主要是关于桌面开发的&#xff0c;对编程有一定的基础&#xff0c;而编程除了关于桌面软件开发&#xff08;VisualStudio如何进行桌面软件开发&#xff1f;&#xff09;&#xff0c;还有手机应…

网络安全自学笔记+学习路线(超详细)

01 什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防两面…

c语言编程练习题:7-193 两小时学完C语言

#include <stdio.h> int main(){int n,k,m;int sum;if (scanf("%d %d %d",&n,&k,&m)!EOF){sum n-k*m;}printf("%d",sum);return 0; }

(学习日记)2023.04.28

写在前面&#xff1a; 由于时间的不足与学习的碎片化&#xff0c;写博客变得有些奢侈。 但是对于记录学习&#xff08;忘了以后能快速复习&#xff09;的渴望一天天变得强烈。 既然如此 不如以天为单位&#xff0c;以时间为顺序&#xff0c;仅仅将博客当做一个知识学习的目录&a…

基于SSM的教务管理系统的设计与实现(论文+源码)_kaic

摘 要 学校教务管理信息化是提高办公效率的主要途径。随着中国高等教育的快速发展和学校规模的不断扩大&#xff0c;在校学生人数不断增加&#xff0c;办学层次出现多元化&#xff0c;由一地办学发展到多地多点办学&#xff0c;同时进一步推行学分制。这些变化使得教务部门的管…

【AI绘图】四、stable difusion提示词如何写?

上一篇&#xff1a;【AI绘图】三、stable diffussion操作界面介绍以及如何使用 如何写好提示词&#xff1f; 写出一份比较好的提示词是文生图技术的关键。但是&#xff0c;写出一份好的prompt并不容易&#xff0c;下面针对“如何写好提示词”这个问题&#xff0c;从提示词构成…

MySQL 数据操纵语言 DML

文章目录 数据操纵语言 DMLINSERT 语句UPDATE 语句DELETE 语句 数据操纵语言 DML 数据操纵语言&#xff08;Data Manipulation Language&#xff0c;DML&#xff09;是 SQL 语言的核心部分之一。在添加、更新或者删除表中的数据时&#xff0c;需要执行 DML 语句。很多时候我们提…

Unity导入Android aar包实现交互全流程

一.搭建Android项目 1.创建一个Android空项目 点击finish后,就等待编译,过程中会自动下载一些插件 等待... 等待... 编译完成: 2.创建Module 右键该工程的app,新建一个Module, Language:Kotlin语法和Java语法,语法不同,后续创建的代码文件有所差异,但不影响代码编…

地震勘探基础(六)之地震反褶积

地震反褶积 地震资料常规处理主要包括地震反褶积&#xff0c;水平叠加和偏移成像三大内容。水平叠加可以提高地震资料的信噪比&#xff0c;偏移成像可以提高地震资料的空间分辨率和保真度&#xff0c;地震反褶积可以提高地震资料的分辨率和压制干扰波。 1954年&#xff0c;Ro…

Python心经(5)

目录 python对于类和实例&#xff0c;&#xff0c;都能随时动态绑定 属性或者函数 可以通过__slots__去限定实例所能绑定属性的范围 python里面类很多定制函数__xx__ 下面给个python里面枚举类型 对type函数去实现 有关迭代器&#xff1a; 生成器&#xff1a; 可迭代对…