MIT 6.S081 Operating System Lecture8 (非常随意的笔记)

news2024/11/13 11:25:09

系列文章目录


文章目录

  • 系列文章目录
  • Page Fault
  • COPY ON WRITE


Page Fault

在这里插入图片描述
eager allocation
通常,因为应用程序无法非常准确地估计自己要增加的内存有多少,所以通常申请的内存会比真实要使用的内存要多。

在XV6中,sbrk的实现默认是eager allocation。这表示了,一旦调用了sbrk,内核会立即分配应用程序所需要的物理内存。但是实际上,对于应用程序来说很难预测自己需要多少内存,所以通常来说,应用程序倾向于申请多于自己所需要的内存。这意味着,进程的内存消耗会增加许多,但是有部分内存永远也不会被应用程序所使用到。

lazy allocation
原则上来说,这不是一个大问题。但是使用虚拟内存和page fault handler,我们完全可以用某种更聪明的方法来解决这里的问题,这里就是利用lazy allocation。核心思想非常简单,sbrk系统调基本上不做任何事情,唯一需要做的事情就是提升p->sz,将p->sz增加 n ,其中 n 是需要新分配的内存page数量。但是内核在这个时间点并不会分配任何物理内存。之后在某个时间点,应用程序使用到了新申请的那部分内存,这时会触发page fault,因为我们还没有将新的内存映射到page table。所以,如果我们解析一个大于旧的 p->sz,但是又小于新的p->sz(注,也就是旧的 p->sz + n)的虚拟地址,我们希望内核能够分配一个内存page,并且重新执行指令。

所以,当我们看到了一个page fault,相应的虚拟地址小于当前p->sz,同时大于stack,那么我们就知道这是一个来自于heap的地址,但是内核还没有分配任何物理内存。所以对于这个page fault的响应也理所当然的直接明了:在page fault handler中,通过kalloc函数分配一个内存page;初始化这个page内容为0;将这个内存page映射到user page table中;最后重新执行指令。比方说,如果是load指令,或者store指令要访问属于当前进程但是还未被分配的内存,在我们映射完新申请的物理内存page之后,重新执行指令应该就能通过了。

student: 在eager allocation的场景,一个进程可能消耗了太多的内存进而耗尽了物理内存资源。如果我们不使用eager allocation,而是使用lazy allocation,应用程序怎么才能知道当前已经没有物理内存可用了?

Frans: 这是个非常好的问题。从应用程序的角度来看,会有一个错觉:存在无限多可用的物理内存。但是在某个时间点,应用程序可能会用光了物理内存,之后如果应用程序再访问一个未被分配的page,但这时又没有物理内存,这时内核可以有两个选择,我稍后会介绍更复杂的那个。你们在lazy lab中要做的是,返回一个错误并杀掉进程。因为现在已经OOM(Out Of Memory)了,内核也无能为力,所以在这个时间点可以杀掉进程。
在这节课稍后的部分会介绍,可以有更加聪明的解决方案。

student: 如何判断一个地址是新分配的内存还是一个无效的地址?

Frans: 在地址空间中,我们有 stack,datatext 。通常来说我们将p->sz设置成一个更大的数,新分配的内存位于旧的p->sz和新的p->sz之间,但是这部分内存还没有实际在物理内存上进行分配。如果使用的地址低于p->sz,那么这是一个用户空间的有效地址。如果大于p->sz,对应的就是一个程序错误,这意味着用户应用程序在尝试解析一个自己不拥有的内存地址。希望这回答了你的问题。

student: 为什么我们需要杀掉进程?操作系统不能只是返回一个错误说现在已经OOM了,尝试做一些别的操作吧。

Frans教授:让我们稍后再回答这个问题。在XV6的page fault中,我们默认会直接杀掉进程,但是这里的处理可以更加聪明。实际的操作系统的处理都会更加聪明,尽管如此,如果最终还是找不到可用内存,实际的操作系统还是可能会杀掉进程。

COPY ON WRITE

在这里插入图片描述
当我们创建子进程时,与其创建,分配并拷贝内容到新的物理内存,其实我们可以直接共享父进程的物理内存page。所以这里,我们可以设置子进程的PTE指向父进程对应的物理内存page。

当然,再次要提及的是,我们这里需要非常小心。因为一旦子进程想要修改这些内存的内容,相应的更新应该对父进程不可见,因为我们希望在父进程和子进程之间有强隔离性,所以这里我们需要更加小心一些。为了确保进程间的隔离性,我们可以将这里的父进程和子进程的PTE的标志位都设置成只读的。

在某个时间点,当我们需要更改内存的内容时,我们会得到page fault。因为父进程和子进程都会继续运行,而父进程或者子进程都可能会执行store指令来更新一些全局变量,这时就会触发page fault,因为现在在向一个只读的PTE写数据。

在得到page fault之后,我们需要拷贝相应的物理page。假设现在是子进程在执行store指令,那么我们会分配一个新的物理内存page,然后将page fault相关的物理内存page拷贝到新分配的物理内存page中,并将新分配的物理内存page映射到子进程。这时,新分配的物理内存page只对子进程的地址空间可见,所以我们可以将相应的PTE设置成可读写,并且我们可以重新执行store指令。实际上,对于触发刚刚page fault的物理page,因为现在只对父进程可见,相应的PTE对于父进程也变成可读写的了。

所以现在,我们拷贝了一个page,将新的page映射到相应的用户地址空间,并重新执行用户指令。重新执行用户指令是指调用userret函数(注,详见6.8),也即是lec06中介绍的返回到用户空间的方法。

student: 我们如何发现父进程写了这部分内存地址?是与子进程相同的方法吗?
Frans教授:是的,因为子进程的地址空间来自于父进程的地址空间的拷贝。如果我们使用了特定的虚拟地址,因为地址空间是相同的,不论是父进程还是子进程,都会有相同的处理方式。

student: 对于一些没有父进程的进程,比如系统启动的第一个进程,它会对于自己的PTE设置成只读的吗?还是设置成可读写的,然后在fork的时候再修改成只读的?
Frans教授:这取决于你。实际上在lazy lab之后,会有一个copy-on-write lab。在这个lab中,你自己可以选择实现方式。当然最简单的方式就是将PTE设置成只读的,当你要写这些page时,你会得到一个page fault,之后你可以再按照上面的流程进行处理。

因为我们经常会拷贝用户进程对应的page,内存硬件有没有实现特定的指令来完成拷贝,因为通常来说内存会有一些读写指令,但是因为我们现在有了从page a拷贝到page b的需求,会有相应的拷贝指令吗?
Frans教授:x86有硬件指令可以用来拷贝一段内存。但是RISC-V并没有这样的指令。当然在一个高性能的实现中,所有这些读写操作都会流水线化,并且按照内存的带宽速度来运行。
在我们这个例子中,我们只需要拷贝1个page,对于一个未修改的XV6系统,我们需要拷贝4个page。所以这里的方法明显更好,因为内存消耗的更少,并且性能会更高,fork会执行的更快。

学生提问:当发生page fault时,我们其实是在向一个只读的地址执行写操作。内核如何能分辨现在是一个copy-on-write fork的场景,而不是应用程序在向一个正常的只读地址写数据。是不是说默认情况下,用户程序的PTE都是可读写的,除非在copy-on-write fork的场景下才可能出现只读的PTE?
Frans教授:内核必须要能够识别这是一个copy-on-write场景。几乎所有的page table硬件都支持了这一点。我们之前并没有提到相关的内容,下图是一个常见的多级page table。对于PTE的标志位,我之前介绍过第0bit到第7bit,但是没有介绍最后两位RSW。这两位保留给supervisor software使用,supervisor softeware指的就是内核。内核可以随意使用这两个bit位。所以可以做的一件事情就是,将bit8标识为当前是一个copy-on-write page。
当内核在管理这些page table时,对于copy-on-write相关的page,内核可以设置相应的bit位,这样当发生page fault时,我们可以发现如果copy-on-write bit位设置了,我们就可以执行相应的操作了。否则的话,比如说lazy allocation,我们就做一些其他的处理操作。
在copy-on-write lab中,你们会使用RSW在PTE中设置一个copy-on-write标志位。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/60526.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于粒子群算法优化的lssvm回归预测-附代码

基于粒子群算法优化的lssvm回归预测 - 附代码 文章目录基于粒子群算法优化的lssvm回归预测 - 附代码1.数据集2.lssvm模型3.基于粒子群算法优化的LSSVM4.测试结果5.Matlab代码摘要:为了提高最小二乘支持向量机(lssvm)的回归预测准确率&#xf…

【C++】stack/queue/list

文章目录注意事项1 emplace 与 push 的区别一、stack(栈)(先进后出、【头部插入、删除】、不许遍历)1 基本概念(栈是自顶向下(top在下),堆是向上)2 stack 常用接口(构造函数、赋值操…

[蓝牙 Mesh Zephyr]-[005]-Key

[蓝牙 Mesh & Zephyr]-[005]-Key 1. Keys Mesh Profile specification 定义了 2 种key:application keys (AppKey)和 network keys(NetKey)。AppKeys 用于保护 upper transport layer 的通信安全,Net…

如何手动添加NLTK data

一、问题描述 Python的自然语言处理库NLTK在安装之后需要下载一些data文件才能使用。官方比较推荐的方式是直接运行下载data的代码: import nltk nltk.download(punkt) 但是实际操作之后发现由于网络原因无法下载成功。 除了运行代码之外,官方还推荐…

分布式队列celery学习

说明:本文内容来自《python自动化运维快速入门》学习 一、介绍 Celery是由纯Python编写的,但协议可以用任何语言实现。目前,已有Ruby实现的RCelery、Node.js实现的node-celery及一个PHP客户端,语言互通也可以通过using webhooks…

[附源码]JAVA毕业设计客户台账管理(系统+LW)

[附源码]JAVA毕业设计客户台账管理(系统LW) 目运行 环境项配置: Jdk1.8 Tomcat8.5 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术&…

Activiti7工作流(二)

流程定义相关 流程定义查询 查询流程相关信息,包含流程定义,流程部署,流程定义版本 Test public void testDefinitionQuery(){//创建ProcessEngine对象ProcessEngine processEngine ProcessEngines.getDefaultProcessEngine();//获取仓库…

自动识别验证码实现系统自动登录(可扩展实现无人自动化操作,如领取各个平台的优惠券),不依赖第三方可以支持离线识别处理,附源码可直接运行

自动识别验证码实现系统自动登录(可扩展实现无人自动化操作,如领取各个平台的优惠券),不依赖第三方可以支持离线识别处理,附源码可直接运行。 实现过程: 1、只要是图片验证码都支持识别; 2、通过百度API实现验证码识别;(依赖第三方,且需要连接互联网,内网不可用,实…

7-FreeRTOS软件定时器

1- 简介 1.1 软件定时器简述 软件定时器就是允许函数设置一定的等待时间,然后执行。定时器执行的函数被称为定时器的回调函数。定时器从启动到执行回调函数之间的时间称为定时器的周期。定时器的回调函数在定时器的时间到达时执行。 软件定时器要先创建才能使用。…

实战Docker未授权访问提权

1、fofa关键字 port“2375” && body“page not found” 2、docker -H tcp://ip:port 可查看到当前所有的实例 3、docker -H tcp://ip:port pull alpine 4、docker -H tcp://ip:port run -it --privileged alpine bin/sh 5、fdisk -l 查看其分区结构 6、创建一个…

Java安全-CC1

CC1 这里用的是组长的链子和yso好像不太一样&#xff0c;不过大体上都是差不多的。后半条的链子都是一样的&#xff0c;而且这条更短更易理解。yso的CC1过段时间再看一下。 环境 Maven依赖&#xff1a; <dependencies><dependency><groupId>commons-colle…

十四、使用 Vue Router 开发单页应用(3)

本章概要 命名路由命名视图编程式导航传递 prop 到路由组件HTML 5 history 模式 14.5 命名路由 有时通过一个名称来标识路由会更方便&#xff0c;特别是在链接到路由&#xff0c;或者执行导航时。可以在创建 Router 实例时&#xff0c;在routes 选项中为路由设置名称。 修改…

用Unity实现FXAA

用Unity实现FXAAFXAA是现代的常用抗锯齿手段之一&#xff0c;这次我们来在Unity中从零开始实现它。 首先我们来看一个测试场景&#xff0c;我们在Game视角下将scale拉到2x&#xff1a; 可以看到画面的锯齿比较严重&#xff0c;下面我们将一步一步地实现FXAA&#xff0c;消除锯…

BDD - SpecFlow ExternalData Plugin 导入外部测试数据

BDD - SpecFlow ExternalData Plugin 导入外部测试数据引言SpecFlow ExternalData 插件支持的数据源Tags实践创建一个 Class Libary Project添加 NuGet Packages添加测试数据源文件CSV 文件Excel 文件添加 Feature 文件实现 Step Definition执行Scenario 导入测试数据源Scenari…

深入URP之Shader篇4: Depth Only Pass

Depth only pass unlit shader中包含了一个Depth Only Pass&#xff0c;这个pass的代码在Packages\com.unity.render-pipelines.universal\Shaders\DepthOnlyPass.hlsl中。这是一个公共pass&#xff0c;几乎所有的URP shader都会包含这个pass。本篇说一说这个pass的作用以及实…

Ubuntu映射到Windows网络驱动器

将虚拟机Ubuntu映射到Windows网络驱动器中&#xff0c;我们需要Ubuntu的网络和主机网络处于同一网段下&#xff0c;然后使Ubuntu具备共享文件功能&#xff0c;最后在windows下添加网络地址。 将Ubuntu设置和主机同一网段 查看主机网络信息 在虚拟机中 选择编辑-- 虚拟网络编…

Java的字符串String

文章目录什么是字符串String类的声明为什么我们的String是不可变的为什么String类用final修饰String的创建字符串比较相等关于Java中的比较关于字符串不同赋值操作对应的内存分配那对象如何进行比较内容字符串常量池StringTalbe的位置字符串常见的操作拼接操作获得字符串的子串…

事件驱动的微服务、CQRS、SAGA、Axon、Spring Boot

事件驱动的微服务、CQRS、SAGA、Axon、Spring Boot 学习构建分布式事件驱动的微服务、CQRS、事件溯源、SAGA、事务 课程英文名&#xff1a;Event-Driven Microservices, CQRS, SAGA, Axon, Spring Boot 此视频教程共10.0小时&#xff0c;中英双语字幕&#xff0c;画质清晰无…

一个带有楼中楼的评论系统数据库设置思路

前言 有个需求&#xff0c;需要实现百度贴吧那样能评论帖子中某一楼的评论里的评论 分析 说起来有点拗口&#xff0c;其实这个评论系统分为4个部分&#xff1a; 主题&#xff08;楼主发布的帖子&#xff09;直接返回楼主的评论&#xff08;从帖&#xff09;&#xff1a;直接…

(11)点云数据处理学习——Colored point cloud registration(彩色点注册)

1、主要参考 &#xff08;1&#xff09;官网介绍 Colored point cloud registration — Open3D 0.16.0 documentation 2、原理和实现 2.1原理 本教程演示了使用几何形状和颜色进行配准的ICP变体。实现了[Park2017]算法。颜色信息锁定沿切平面的对齐。因此&#xff0c;该算法…