Ansys Zemax | 探究 OpticStudio 偏振分析功能

news2024/12/29 9:07:20

本文介绍了 OpticStudio 模拟基于偏振的光学现象的几种方法。本文的目的是在对基于偏振的光学进行建模时检查这些特征的优势和正确应用。讨论的功能包括偏振光瞳图、琼斯矩阵、双折射、表面涂层等。这些对于波片和隔离器等实际应用很重要。(联系我们获取文章附件)

简介

偏振效应被用于各个领域的无数光学系统中。OpticStudio 允许用户指定进入系统的光的输入偏振以及序列模式中的表面与偏振特性交互的设置,提供了对任何应用进行建模的方法。建模偏振相关介质的三种方法是通过琼斯矩阵表面、表面涂层和双折射输入/输出表面。

为了选择合适的表面类型,了解您尝试建模的偏振器的用途很重要。本文将描述设置极化系统以及上述每个表面/表面设置的优缺点。

偏振光源的产生

OpticStudio 中的所有偏振分析都需要输入偏振态,通常以琼斯矢量 (Jx, Jy) 的形式给出,其中X和Y的起始相位可选。向 OpticStudio 输入偏振态有两种方式。第一种方法是在单独的分析设置中明确定义初始偏振状态(Jx、Jy和X/Y相位),例如使用偏振光线跟踪(Polarization Ray Trace)和偏振光瞳图(Polarization Pupil Map)。

第二种方法是在系统管理器(System Explorer)的“偏振(Polarization)”部分应用偏振状态。通过检查各个分析设置中的“使用偏振(Use Polarization)”设置(或类似设置),在任何适用分析窗口的计算中考虑此处输入的状态。

系统管理器中定义的“方法(Method)”(或参考状态)需要将2D琼斯矩阵输入(Jx、Jy)转换为 3D 电场分量(Ex、Ey、Ez)。虽然很容易认为Jx对应于S极化状态的能量量,Jy对应于P极化状态的能量量,但如果没有入射平面,这些定义是不明确的(参见这个论坛以获取更多信息)。也就是说,从光源发射并沿射线矢量K在自由空间中传播的射线需要参考才能准确定义偏振态矢量S和P。在 OpticStudio 中,可以使用以下参考:

X 轴参考: P向量由K叉乘X确定,S=P叉乘K(默认);

Y 轴参考: S向量由Y叉乘K确定,P=K叉乘S;

Z 轴参考: S向量由K叉乘Z确定,P=K叉乘S。

注意:S、P和K(传播方向)始终是正交的。它们分别由下表中的红色、蓝色和绿色向量表示。

这种方法允许用户在生成输入极化时能更加灵活。默认表面在z方向具有表面法线,因此经典的S和P定义将限制用户生成Z参考输入偏振。

偏振光瞳图

偏振光瞳图可以说是 OpticStudio 中最有用的工具,可以快速查看给定表面上光束的偏振状态。也就是说,它确实有一些细微差别,必须完全理解才能准确解释其结果。

通常,OpticStudio 执行与时间无关的计算(即它呈现稳态系统的时间快照)。然而,极化瞳孔图不是这种情况,它在定义的表面上随着时间经过一个周期时在笛卡尔图上绘制电场矢量 (Ex, Ey) 的端点。这是因为相位随时间的变化决定了偏振椭圆的方向。对于几乎所有系统,OpticStudio 是在时间上向前还是向后进行计算并不重要,因为它假设系统处于稳定状态。默认情况下,计算会在时间上向前看(即,如果系统要及时向前推进一些小量,则在“将击中”指定表面的光线的相位)。

此外,用户应注意,在定义Jx和Jy之间的初始相移时,“X-相位”或“Y-相位”的正值将导致Jx相对于Jy在空间上滞后,反之亦然。例如,定义X-相位=90度和Y-相位=0度将导致电场的Ex分量落后Ey分量90度(见下图)。

假设 (Jx, Jy) = (0.707,0.707),产生的偏振椭圆将是顺时针、圆偏振,如偏振光瞳图所示。

偏振相关介质的类型

在OpticStudio中,有多种方法可以操纵给定光束的偏振态。其中一些方法涉及引入与偏振相关的表面和材料。在这里,我们将介绍三种这样的方法并描述它们在OpticStudio中的一般应用。

琼斯矩阵(Jones matrix)

琼斯矩阵表面是为法向入射光设计的理想化构造。它是一个二乘二的矩阵,它根据下式修改琼斯向量(描述电场)

其中A、B、C、D、Ex和Ey都是复数。该矩阵可用于解释具有2-D矢量的3-D现象,假设光沿Z轴传播。因此,电场存在于X-Y平面中。如果射线确实与系统的Z轴对齐,则该表面可以为S和P状态之间的相对相变以及S和P状态的传输提供理想的模拟。

OpticStudio 将允许用户将琼斯矩阵表面应用于倾斜的入射角,但根据定义,此配置中的结果将代表近似值。该计算未考虑沿z的电场分量矩阵的影响、将光束分裂为普通分量和异常分量(如果对双折射材料进行建模)以及菲涅耳系数。

描述延迟器的琼斯矩阵不应与倾斜入射角一起使用。要准确计算离轴相对相位变化,应使用双折射输入和双折射输出表面。

描述偏振的琼斯矩阵可以提供一个不错的离轴近似值。该表面将允许电场在z方向上传输,并表现出它们在X和Y电场分量的轴上的表现。然后减去平行于K的电场分量,使电场保持垂直于K。要创建作用于Ez分量的偏振表面,应使用镀膜。

表面镀膜

OpticStudio 允许用户定义真实和理想化的薄膜光学镀膜,并将这些镀膜应用于光学设计中的任何表面。OpticStudio 还包含大量预设的镀膜目录,其中包括各种常用镀膜。但本次讨论将集中于它们如何影响光线的偏振态。

在这种情况下讨论镀膜时,必须考虑这样一个事实,即电场的振幅和偏振状态由向量描述:

其中Ex、Ey、Ez是复数。电场矢量E必须与射线矢量的传播正交。在两种介质之间的边界处,电场的透射率、反射率和相位对于场的S分量和P分量是不同的。场的S分量是E沿垂直于入射平面的轴的投影,而P分量位于入射平面内。入射平面包含射线传播矢量和截点处的表面法线矢量。注意:根据S和P分量的这个定义,当光线垂直于表面传播时,它们之间的区别变得模糊。

由此,我们可以看到,当偏振光入射到表面时,S和P偏振态是相对于该表面定义的。如果该表面涂有涂层,则透射光的部分可能会发生显著变化,具体取决于系统管理器中定义的参考方法。

以一个点物体为例,它位于具有P状态通过镀层的平面前方一定距离处;来自该点的光被定义为具有初始偏振态Jx=0,Jy=1。使用X或Y轴参考,通过系统传输(或阻挡)的S和P偏振光的量在整个表面上显著变化。这是因为在表面上的所有入射点,输入偏振Jx和Jy分别保持平行于全局X轴和Y轴。

但是,当使用Z轴参考时,Jx和Jy状态会随着光线矢量围绕全局Z轴旋转而发生变化,因此没有被阻挡的偏振状态。

因此,在使用涂层时,必须注意将涂层定义与输入偏振参考方法正确关联。

在应用上述概念时,用户可以使用 Ideal2 和 Table Coating 格式分别指定S和P偏振光的实部和虚部振幅传输和反射系数。这些涂层格式非常适合模拟理想的偏振器。此外,CODA 优化操作数可用于优化特定偏振值的涂层。

双折射输入/双折射输出

双折射材料的运作方式与 OpticStudio 内部的琼斯矩阵或镀膜不同。要在序列模式下定义双折射组件,用户必须在镜头数据编辑器中定义两个表面,一个双折射输入表面和一个双折射输出表面。在由这些表面界定的物理空间内,OpticStudio 需要两种材料,一种用于模拟常规折射率,另一种用于模拟双折射介质的非常规折射率。为此,OpticStudio 使用为双折射输入表面定义的材料指数作为常规指数。然后将“-E”附加到材料名称并在当前加载的材料目录中搜索该名称;具有该名称的材料用于非常规折射率。

通过这种定义双折射介质的方法,与琼斯矩阵表面相比,双折射输入/输出表面允许用户计算菲涅耳系数和吸收,以提供更准确的强度传输计算。也就是说,用户可以有选择地独立跟踪普通光束或异常光束,或者跟踪一个同时考虑由于另一个引起的相位旋转。这是由模式标志控制的,它允许用户在如何根据给定系统的普通光束和非常光束之间的角度偏差对双折射效应进行建模方面具有更大的灵活性。

双折射输入/输出表面在模拟双折射方面的唯一局限是它们不考虑光线分裂的影响。为了考虑光线分裂,系统应该转换为非序列模式。

偏振表面相关应用

本节介绍如何在 OpticStudio 中定义双折射延迟器和光隔离器的简要示例。

实用延迟器

光学延迟器(或波片)是有意将入射光的偏振从一种状态改变为另一种状态的光学组件。此示例描述了如何构建具有λ/4相变的有效零级延迟器,也称为四分之一波片,它将线偏振光转换为圆偏振光。它利用双折射材料石英和HeNe激光器 (632.8 nm)。

通常,波片的延迟由下式给出:

其中,Δn是普通模式和非常模式之间的折射率差,λ是光的波长,d是晶体的长度,Γ是以弧度为单位的延迟。变量m是一个自然数,表示波片的阶数。根据这个定义,由于光的2π周期性质,相对相位变化不受顺序的影响。也就是说,高阶波片比低阶波片在物理上更厚,它们更容易受到热膨胀的影响,离轴光束的延迟误差被放大,如果波长与设计值不同,延迟误差也会被放大 。

实际情况中,很少有真正的零级波片被生产出来,因为所需的晶体宽度对于制造来说太薄太脆弱。相反,有效的零级波片是由两个较厚的单轴晶体(通常是相同的材料)制成的,它们具有交叉的晶轴。它们不如真正的零级波片有效,但由于它们更容易制造,因此它们在性能和可制造性之间提供了良好的折衷。

要在 OpticStudio 中构建这样的组件,镜头数据编辑器应如下所示。

请注意,此镜头数据编辑器定义了一个10阶四分之一波片(紫色),然后是一个10阶零相对相位变化片(绿色)。该组合给出了有效的0阶四分之一波片。两个双折射晶体的厚度计算如下:

如上所述,OpticStudio 一次仅跟踪一组光线,但双折射输入/输出表面允许用户同时考虑普通和非正常光线。在该系统中,将Mode Flags设置为2或3可为系统的输出状态提供非常准确的模型,因为石英不是强双折射材料,因此普通光束和非常光束之间的角度偏差很小。此外,晶体内的传播距离相对较小,因此光束将在定义的图像平面上几乎完全重叠。使用模式2和45度线偏振输入光束,输出是完美的轴上圆偏振光。这与真正的零阶波片(见下表)完全匹配预期结果。

然而,随着光束入射角的增加,有效的零级板开始增加比真正的零级板更多的延迟,导致椭圆偏振光并最终接近线性偏振光。在31.5度时,有效的零级片基本上用作半波片而不是四分之一波片。

分析这些系统在仅考虑普通或特殊光束时的行为方式也很有趣。比较每种情况的结果的一种简单方法是定义多配置编辑器,如下所示。此处,PRAM 操作数应用于双折射输入表面上的模式标志。对于配置3,模式设置为零(普通光束);这在注释行中标记为“O-O”。对于配置4,它们分别为表面1和3设置为0(普通)和1(非寻常)(在注释行中标记为“O-E”),依此类推。

光隔离器

光隔离器是只允许光在一个方向上传输的组件。此类组件通常会引发磁光现象,例如法拉第效应。尽管 OpticStudio 目前没有任何表面可以模拟这种磁光效应,但它可以通过琼斯矩阵表面模拟轴上光隔离器的行为。

隔离器内部的光学材料会根据传播方向对入射光束产生不同的影响。也就是说,对于沿给定方向传播的线偏振光束,材料会将光束旋转某个角度 α;当沿相反方向行进时,材料会使光束旋转-α。以弧度为单位的旋转角 α 定义为:

其中ν是 Verdet 常数(以弧度每特斯拉米为单位的旋转比例常数),B是施加到磁光介质的磁通密度(特斯拉),d是介质的长度(以米为单位)。

在OpticStudio中,可以通过琼斯矩阵曲面定义旋转角度:

然而,这假设在z方向上没有电场传播。由于额外的离轴传播距离,这也不会计算媒体本身对z分量或额外旋转的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/602834.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

plt.loglog()函数的用法和示例(含代码)

目录 常用坐标下的图像显示在loglog函数下的显示同时显示参考文献 plt.loglog()函数通常是用于和对数函数相关的显示中。 在研究plt.loglog()函数之前,我们可以先从常见的线性平面坐标系入手。 如 np.linespace()函数,它在指定的间隔内返回均等的数字。 np.linespa…

Redis主从架构、数据同步原理、全量同步、增量同步

目录 专栏导读一、Redis主从架构二、数据同步原理三、全量同步的流程三、可以从以下几个方面来优化Redis主从就集群四、全量同步和增量同步区别?五、什么时候执行全量同步?六、什么时候执行增量同步?七、超卖问题 大家好,我是哪吒…

高完整性系统工程(八):Hoare Logic

目录 1. 霍尔逻辑(Proving Programs Correct) 1.1 警告(Caveats) 1.2 误解(Misconception) 1.3 编程语言(Programming Language) 1.4 程序(Programs) 1…

java学习 spring mybatis maven juc并发 缓存 分布式

Spring系列第11篇:bean中的autowire-candidate又是干什么的?_路人甲Java的博客-CSDN博客 Spring系列 Spring系列第1篇:为何要学spring? Spring系列第2篇:控制反转(IoC)与依赖注入(DI…

I.MX RT1170加密启动详解(1):加密Boot镜像组成

使用RT1170芯片构建的所有平台一般都是高端场合,我们需要考虑软件的安全需求。该芯片集成了一系列安全功能。这些特性中的大多数提供针对特定类型攻击的保护,并且可以根据所需的保护程度配置为不同的级别。这些特性可以协同工作,也可以独立工…

macOS Ventura 13.5beta2 OpenCore 双引导分区原版黑苹果镜像

镜像特点(本文原地址:http://www.imacosx.cn/113805.html,转载请注明出处) 完全由黑果魏叔官方制作,针对各种机型进行默认配置,让黑苹果安装不再困难。系统镜像设置为双引导分区,全面去除clove…

【cfeng work】什么是云原生 Cloud Native

WorkProj 内容管理 云原生云原生应用十二要素应用cfeng的work理解 本文introduce 云原生 Cloud Native相关内容 随着技术的迭代,从最初的物理机—> 虚拟机,从单机 —> 分布式微服务, 现在的热门概念就是云☁(cloud&#xff…

Windows 11 绕过 TPM 方法总结,通用免 TPM 镜像下载 (2023 年 5 月更新)

Windows 11 绕过 TPM 方法总结,通用免 TPM 镜像下载 (2023 年 5 月更新) 在虚拟机、Mac 电脑和 TPM 不符合要求的旧电脑上安装 Windows 11 的通用方法总结 请访问原文链接:https://sysin.org/blog/windows-11-no-tpm/,查看最新版。原创作品…

Tomcat安全配置

1.删除webapps里面自带文件(关闭manage页面等) 删除webapps目录中的docs、examples、host-manager、manager等正式环境用不着的目录,这一步就可以解决大部分漏洞。有的网站没删除manager页面,并且管理员弱口令,导致直…

PCL点云处理之三维凸包点提取与凸包模型生成,分别保存到PCD与PLY文件(一百七十一)

PCL点云处理之三维凸包点提取与凸包模型生成,分别保存到PCD与PLY文件(一百七十一) 一、算法介绍二、算法实现1.代码2.结果总结一、算法介绍 现给定一块点云,需要实现下面两个功能开发 (1)获取点云的三维凸包点,保存至PCD格式的文件中 (2)获取点云的三维凸包模型,保存…

华为OD机试真题B卷 Java 实现【报数游戏】,附详细解题思路

一、题目描述 100个人围成一圈,每个人有一个编码,编号从1开始到100。他们从1开始依次报数,报到为M的人自动退出圈圈,然后下一个人接着从1开始报数,直到剩余的人数小于M。请问最后剩余的人在原先的编号为多少&#xff…

Netty核心源码剖析(一)

准备工作 将Netty的源码包netty-all-4.1.20.Final-sources.jar添加到项目中; 在io.netty.example包下,有很多Netty源码案例,可以用来分析! 1.Netty启动过程源码剖析 1>.将io.netty.exampler.echo包下的文件复制到当前项目的其他目录中; 2>.EchoServer.java /*** Ec…

建立第一个react页面

<body><!-- 准备一个容器 --><div id"test"></div><!-- 必须在周边库之前引入核心库 --><script type"text/javascript"src"./js/react.development.js"></script><!-- 引入周边库 --><scr…

实战项目!上位机与PLC通讯

大家好&#xff0c;我是华山自控编程朱老师&#xff0c;今天给大家介绍下我之前设计的入门项目——工件正反面识别及角度测试系统 系统功能 首先&#xff0c;系统的功能包括识别工件正反面&#xff0c;测试工件旋转角度。这些任务是由PLC来控制工件传送、启动拍照以及上位机。…

张小飞的Java之路——第四十三章——字符流

写在前面&#xff1a; 视频是什么东西&#xff0c;有看文档精彩吗&#xff1f; 视频是什么东西&#xff0c;有看文档速度快吗&#xff1f; 视频是什么东西&#xff0c;有看文档效率高吗&#xff1f; 诸小亮&#xff1a;接下来我们学习——字符流 张小飞&#xff1a;刚才的…

第二十三篇、基于Arduino uno,控制RGB灯亮灭——结果导向

0、结果 说明&#xff1a;RGB灯亮红色&#xff0c;一秒钟闪烁一次&#xff0c;可以很方便的更改灯的颜色&#xff0c;如果是你想要的&#xff0c;可以接着往下看。 1、外观 说明&#xff1a;RGB灯有共阴极的&#xff0c;也有共阳极的&#xff0c;从外观上是看不出来的&#…

C++ 学习 ::【基础篇:12】:C++ 类的基本成员函数:构造函数基本的定义与调用 |(无参构造与有参构造及缺省参数式构造)

本系列 C 相关文章 仅为笔者学习笔记记录&#xff0c;用自己的理解记录学习&#xff01;C 学习系列将分为三个阶段&#xff1a;基础篇、STL 篇、高阶数据结构与算法篇&#xff0c;相关重点内容如下&#xff1a; 基础篇&#xff1a;类与对象&#xff08;涉及C的三大特性等&#…

MySQL - 读写分离、一主一从、双主双从

文章目录 读写分离一、介绍二、一主一从2.1 原理2.2 服务器准备2.3 一主一从读写分离2.3.1 MyCat 配置2.3.1.1 schema.xml2.3.1.2 server.xml配置 三、双主双从3.1 双主双从介绍3.2 服务器准备3.3 双主双从读写分离3.3.1 主库配置3.3.1.1 211主库配置3.3.1.2 213主库配置 3.3.2…

rknn ffmpeg硬解码环境配置以及调用代码

查看rk3588系统信息 cat /proc/version 本编译在 Debain/ubuntu20.04 这两家板子上编译成功。 安装依赖 sudo apt-get install libx264-dev sudo apt-get install libfaac-dev sudo apt-get install libmp3lame-dev sudo apt-get install libtheora-dev sud…

综合能效管理:全面助力企业节能降耗 86型双联明装墙插面板智选套装上市

能源的综合利用效率主要体现在安全性、节能性及经济性方面。随着物联网智能技术的发展&#xff0c;能源监测与安全监控管理不仅面向能源生产、存储、传输、配送、运用环节&#xff0c;还需要更广泛地、深入地涵盖到分布式能源节点的能源使用消耗的全过程&#xff0c;基于对用户…