- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
NLP的功能:
本周使用AG News数据集进行文本分类。实现过程分为前期准备、代码实战、使用测试数据集评估模型和总结四个部分。前期准备中准备环境、加载数据集;代码实战中构建词典、生成数据批次和迭代器,定义模型;使用测试数据集评估模型,对训练好的模型进行测试。
常用函数:
.build_vocab_from_iterator()函数详解
torchtext.vocab.build_vocab_from_iterator 的作用是从一个可迭代对象中统计token的频次,并返回一个vocab(词汇字典)
上述是官网API接口的定义形式,参数有五个,返回值是Vocab类型实例,五个参数分别是:
●iterator:一个用于创建vocab(词汇字典)的可迭代对象。
●min_freq:最小频数。只有在文本中出现频率大于等于min_freq的token才会被保留下来
●specials:特殊标志,字符串列表。用于在词汇字典中添加一些特殊的token/标记,比如最常用的’',用于代表词汇字典中未存在的token,当然也可以用自己喜欢的符号来代替,具体的意义也取决于用的人。
●special_first:表示是否将specials放到字典的最前面,默认是True
●max_tokens:即限制一下这个词汇字典的最大长度。且这个长度包含的specials列表的长度
代码:
import torch
import torch.nn as nn
import torchvision
import os,PIL,pathlib,warnings
import time
from torchvision import transforms, datasets
from torchtext.datasets import AG_NEWS
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torch import nn
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
warnings.filterwarnings("ignore") #忽略警告信息
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
#数据集
train_iter = AG_NEWS(split='train') # 加载 AG News 数据集
#构建词典
tokenizer = get_tokenizer('basic_english') # 返回分词器函数
def yield_tokens(data_iter):
for _, text in data_iter:
yield tokenizer(text)
vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"]) # 设置默认索引,如果找不到单词,则会选择默认索引
print(vocab(['here', 'is', 'an', 'example']))
text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: int(x) - 1
print(text_pipeline('here is the an example'))
print(label_pipeline('10'))
from torch.utils.data import DataLoader
def collate_batch(batch):
label_list, text_list, offsets = [], [], [0]
for (_label, _text) in batch:
# 标签列表
label_list.append(label_pipeline(_label))
# 文本列表
processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
text_list.append(processed_text)
# 偏移量,即语句的总词汇量
offsets.append(processed_text.size(0))
label_list = torch.tensor(label_list, dtype=torch.int64)
text_list = torch.cat(text_list)
offsets = torch.tensor(offsets[:-1]).cumsum(dim=0) #返回维度dim中输入元素的累计和
return label_list.to(device), text_list.to(device), offsets.to(device)
dataloader = DataLoader(train_iter,
batch_size=8,
shuffle =False,
collate_fn=collate_batch)
class TextClassificationModel(nn.Module):
def __init__(self, vocab_size, embed_dim, num_class):
super(TextClassificationModel, self).__init__()
self.embedding = nn.EmbeddingBag(vocab_size, # 词典大小
embed_dim, # 嵌入的维度
sparse=False) #
self.fc = nn.Linear(embed_dim, num_class)
self.init_weights()
def init_weights(self):
initrange = 0.5
self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc.weight.data.uniform_(-initrange, initrange)
self.fc.bias.data.zero_()
def forward(self, text, offsets):
embedded = self.embedding(text, offsets)
return self.fc(embedded)
num_class = len(set([label for (label, text) in train_iter]))
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)
def train(dataloader):
model.train() # 切换为训练模式
total_acc, train_loss, total_count = 0, 0, 0
log_interval = 500
start_time = time.time()
for idx, (label, text, offsets) in enumerate(dataloader):
predicted_label = model(text, offsets)
optimizer.zero_grad() # grad属性归零
loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
total_acc += (predicted_label.argmax(1) == label).sum().item()
train_loss += loss.item()
total_count += label.size(0)
if idx % log_interval == 0 and idx > 0:
elapsed = time.time() - start_time
print('| epoch {:1d} | {:4d}/{:4d} batches '
'| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx, len(dataloader),
total_acc/total_count, train_loss/total_count))
total_acc, train_loss, total_count = 0, 0, 0
start_time = time.time()
def evaluate(dataloader):
model.eval() # 切换为测试模式
total_acc, train_loss, total_count = 0, 0, 0
with torch.no_grad():
for idx, (label, text, offsets) in enumerate(dataloader):
predicted_label = model(text, offsets)
loss = criterion(predicted_label, label) # 计算loss值
# 记录测试数据
total_acc += (predicted_label.argmax(1) == label).sum().item()
train_loss += loss.item()
total_count += label.size(0)
return total_acc/total_count, train_loss/total_count
EPOCHS = 10 # epoch
LR = 5 # 学习率
BATCH_SIZE = 64 # batch size for training
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None
train_iter, test_iter = AG_NEWS() # 加载数据
train_dataset = to_map_style_dataset(train_iter)
test_dataset = to_map_style_dataset(test_iter)
num_train = int(len(train_dataset) * 0.95)
split_train_, split_valid_ = random_split(train_dataset,
[num_train, len(train_dataset)-num_train])
train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
shuffle=True, collate_fn=collate_batch)
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
shuffle=True, collate_fn=collate_batch)
test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE,
shuffle=True, collate_fn=collate_batch)
for epoch in range(1, EPOCHS + 1):
epoch_start_time = time.time()
train(train_dataloader)
val_acc, val_loss = evaluate(valid_dataloader)
if total_accu is not None and total_accu > val_acc:
scheduler.step()
else:
total_accu = val_acc
print('| epoch {:1d} | time: {:4.2f}s | '
'valid_acc {:4.3f} valid_loss {:4.3f}'.format(epoch,
time.time() - epoch_start_time,
val_acc,val_loss))
# 评估模型
test_acc, test_loss = evaluate(test_dataloader)
print('test accuracy {:8.3f}'.format(test_acc))