【深度学习】yolov7 pytorch模型转onnx,转ncnn模型和mnn模型使用细节

news2025/1/9 15:07:47

文章目录

  • 前言
  • 1.前置
    • 1.1 安装必要的库
    • 1.2 .pt 权重转ncnn 和mnn所需要的权重
  • 2、编码C++项目
    • 1.ncnn
    • 2.mnn
  • 总结


前言

yolov7 pytorch模型转onnx,转ncnn模型和mnn模型使用细节,记录一下
git仓库:
yolov7 https://github.com/WongKinYiu/yolov7
ncnn:https://github.com/Tencent/ncnn
mnn:https://github.com/alibaba/MNN


1.前置

1.1 安装必要的库

安装opencv, 我是编译安装的,编了一个多小时,少不更事啊

sudo apt-get update
sudo apt-get install libopencv-dev

后面会用到opencv库,等会会提到;

编译安装ncnn和mnn
ncnn

cd 到 ncnn的文件夹
cd /home/ubuntu/workplace/ncnn
  209  mkdir build
  210  cd build/
  211  cmake ..
  212  make install
  213  sudo make install

cmake  ,, 它会找到上一级目录的cmakelist进行编译

mnn:
套路是一样的,
但需要改一下,cmakelist文件 第41行,将off 改成on 这是将onnx转成.mnn 所需要的二进制文件。
option(MNN_BUILD_CONVERTER “Build Converter” ON)

cd /home/ubuntu/workplace/mnn
  209  mkdir build
  210  cd build/
  211  cmake ..
  212  make install
  213  sudo make install

1.2 .pt 权重转ncnn 和mnn所需要的权重

其实2步走:
1, .pt 转 .onnx
cd 到yolov7的目录,转模型到onnx,不要把nms加

cd /home/ubuntu/workplace/pycharm_project/yolov7
python export.py --weights yolov7.pt --simplify --img-size 640

2.1 对ncnn .onnx 转成 .bin 和 .param 经过1已经生成了 所需要的权重
在这里插入图片描述也可以

ubuntu@ubuntu:~/ncnn/build/install/bin$ ./onnx2ncnn /home/ubuntu/yolov7/yolov7.onnx /home/ubuntu/yolov7/yolov7/yolov7.param /home/ubuntu/yolov7/yolov7.bin

在使用ncnn库加载模型时,通常需要两个文件:.param文件和.bin文件。其中,.param 文件主要用於描述模型的结构和参数信息,而.bin文件则包含了模型中的权重和偏置等信息。这两个文件都是由模型训练过程中产生的。

2.2 对mnn .onnx 转 .mnn
去编译好的mnn文件夹下
在这里插入图片描述

./MNNConvert -f ONNX --modelFile /home/ubuntu/workplace/pycharm_project/yolov7/yolov7.onnx --MNNModel /home/ubuntu/workplace/pycharm_project/yolov7/yolov7.mnn --bizCode MNN

就会转出.mnn 的权重

2、编码C++项目

1.ncnn

cmakelist.txt

cmake_minimum_required(VERSION 3.16)
project(untitled22)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")
set(CMAKE_CXX_STANDARD 11)
include_directories(${CMAKE_SOURCE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/include)
include_directories(${CMAKE_SOURCE_DIR}/include/ncnn)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库

add_library(libncnn STATIC IMPORTED)
set_target_properties(libncnn PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/lib/libncnn.a)


add_executable(untitled22 main.cpp)
target_link_libraries(untitled22 ${OpenCV_LIBS} libncnn )

目录结构
在这里插入图片描述main.cpp

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#include "layer.h"
#include "net.h"

#if defined(USE_NCNN_SIMPLEOCV)
#include "simpleocv.h"
#else
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif
#include <float.h>
#include <stdio.h>
#include <vector>

#define MAX_STRIDE 32

struct Object
{
    cv::Rect_<float> rect;
    int label;
    float prob;
};

static inline float intersection_area(const Object& a, const Object& b)
{
    cv::Rect_<float> inter = a.rect & b.rect;
    return inter.area();
}

static void qsort_descent_inplace(std::vector<Object>& objects, int left, int right)
{
    int i = left;
    int j = right;
    float p = objects[(left + right) / 2].prob;

    while (i <= j)
    {
        while (objects[i].prob > p)
            i++;

        while (objects[j].prob < p)
            j--;

        if (i <= j)
        {
            // swap
            std::swap(objects[i], objects[j]);

            i++;
            j--;
        }
    }

#pragma omp parallel sections
    {
#pragma omp section
        {
            if (left < j) qsort_descent_inplace(objects, left, j);
        }
#pragma omp section
        {
            if (i < right) qsort_descent_inplace(objects, i, right);
        }
    }
}

static void qsort_descent_inplace(std::vector<Object>& objects)
{
    if (objects.empty())
        return;

    qsort_descent_inplace(objects, 0, objects.size() - 1);
}

static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold, bool agnostic = false)
{
    picked.clear();

    const int n = faceobjects.size();

    std::vector<float> areas(n);
    for (int i = 0; i < n; i++)
    {
        areas[i] = faceobjects[i].rect.area();
    }

    for (int i = 0; i < n; i++)
    {
        const Object& a = faceobjects[i];

        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++)
        {
            const Object& b = faceobjects[picked[j]];

            if (!agnostic && a.label != b.label)
                continue;

            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }

        if (keep)
            picked.push_back(i);
    }
}

static inline float sigmoid(float x)
{
    return static_cast<float>(1.f / (1.f + exp(-x)));
}

static void generate_proposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
{
    const int num_grid = feat_blob.h;

    int num_grid_x;
    int num_grid_y;
    if (in_pad.w > in_pad.h)
    {
        num_grid_x = in_pad.w / stride;
        num_grid_y = num_grid / num_grid_x;
    }
    else
    {
        num_grid_y = in_pad.h / stride;
        num_grid_x = num_grid / num_grid_y;
    }

    const int num_class = feat_blob.w - 5;

    const int num_anchors = anchors.w / 2;

    for (int q = 0; q < num_anchors; q++)
    {
        const float anchor_w = anchors[q * 2];
        const float anchor_h = anchors[q * 2 + 1];

        const ncnn::Mat feat = feat_blob.channel(q);

        for (int i = 0; i < num_grid_y; i++)
        {
            for (int j = 0; j < num_grid_x; j++)
            {
                const float* featptr = feat.row(i * num_grid_x + j);
                float box_confidence = sigmoid(featptr[4]);
                if (box_confidence >= prob_threshold)
                {
                    // find class index with max class score
                    int class_index = 0;
                    float class_score = -FLT_MAX;
                    for (int k = 0; k < num_class; k++)
                    {
                        float score = featptr[5 + k];
                        if (score > class_score)
                        {
                            class_index = k;
                            class_score = score;
                        }
                    }
                    float confidence = box_confidence * sigmoid(class_score);
                    if (confidence >= prob_threshold)
                    {
                        float dx = sigmoid(featptr[0]);
                        float dy = sigmoid(featptr[1]);
                        float dw = sigmoid(featptr[2]);
                        float dh = sigmoid(featptr[3]);

                        float pb_cx = (dx * 2.f - 0.5f + j) * stride;
                        float pb_cy = (dy * 2.f - 0.5f + i) * stride;

                        float pb_w = pow(dw * 2.f, 2) * anchor_w;
                        float pb_h = pow(dh * 2.f, 2) * anchor_h;

                        float x0 = pb_cx - pb_w * 0.5f;
                        float y0 = pb_cy - pb_h * 0.5f;
                        float x1 = pb_cx + pb_w * 0.5f;
                        float y1 = pb_cy + pb_h * 0.5f;

                        Object obj;
                        obj.rect.x = x0;
                        obj.rect.y = y0;
                        obj.rect.width = x1 - x0;
                        obj.rect.height = y1 - y0;
                        obj.label = class_index;
                        obj.prob = confidence;

                        objects.push_back(obj);
                    }
                }
            }
        }
    }
}

static int detect_yolov7(const cv::Mat& bgr, std::vector<Object>& objects)
{
    ncnn::Net yolov7;

    yolov7.opt.use_vulkan_compute = true;
    // yolov7.opt.use_bf16_storage = true;

    // original pretrained model from https://github.com/WongKinYiu/yolov7
    // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
    yolov7.load_param("/home/ubuntu/CLionProjects/untitled1/yolov7.param");
    yolov7.load_model("/home/ubuntu/CLionProjects/untitled1/yolov7.bin");

    const int target_size = 640;
    const float prob_threshold = 0.25f;
    const float nms_threshold = 0.45f;

    int img_w = bgr.cols;
    int img_h = bgr.rows;

    // letterbox pad to multiple of MAX_STRIDE
    int w = img_w;
    int h = img_h;
    float scale = 1.f;
    if (w > h)
    {
        scale = (float)target_size / w;
        w = target_size;
        h = h * scale;
    }
    else
    {
        scale = (float)target_size / h;
        h = target_size;
        w = w * scale;
    }

    ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, w, h);

    int wpad = (w + MAX_STRIDE - 1) / MAX_STRIDE * MAX_STRIDE - w;
    int hpad = (h + MAX_STRIDE - 1) / MAX_STRIDE * MAX_STRIDE - h;
    ncnn::Mat in_pad;
    ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);

    const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
    in_pad.substract_mean_normalize(0, norm_vals);

    ncnn::Extractor ex = yolov7.create_extractor();

    ex.input("images", in_pad);

    std::vector<Object> proposals;

    // stride 8
    {
        ncnn::Mat out;
        ex.extract("output", out);

        ncnn::Mat anchors(6);
        anchors[0] = 12.f;
        anchors[1] = 16.f;
        anchors[2] = 19.f;
        anchors[3] = 36.f;
        anchors[4] = 40.f;
        anchors[5] = 28.f;

        std::vector<Object> objects8;
        generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8);

        proposals.insert(proposals.end(), objects8.begin(), objects8.end());
    }

    // stride 16
    {
        ncnn::Mat out;

        ex.extract("516", out);

        ncnn::Mat anchors(6);
        anchors[0] = 36.f;
        anchors[1] = 75.f;
        anchors[2] = 76.f;
        anchors[3] = 55.f;
        anchors[4] = 72.f;
        anchors[5] = 146.f;

        std::vector<Object> objects16;
        generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16);

        proposals.insert(proposals.end(), objects16.begin(), objects16.end());
    }

    // stride 32
    {
        ncnn::Mat out;

        ex.extract("528", out);

        ncnn::Mat anchors(6);
        anchors[0] = 142.f;
        anchors[1] = 110.f;
        anchors[2] = 192.f;
        anchors[3] = 243.f;
        anchors[4] = 459.f;
        anchors[5] = 401.f;

        std::vector<Object> objects32;
        generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32);

        proposals.insert(proposals.end(), objects32.begin(), objects32.end());
    }

    // sort all proposals by score from highest to lowest
    qsort_descent_inplace(proposals);

    // apply nms with nms_threshold
    std::vector<int> picked;
    nms_sorted_bboxes(proposals, picked, nms_threshold);

    int count = picked.size();

    objects.resize(count);
    for (int i = 0; i < count; i++)
    {
        objects[i] = proposals[picked[i]];

        // adjust offset to original unpadded
        float x0 = (objects[i].rect.x - (wpad / 2)) / scale;
        float y0 = (objects[i].rect.y - (hpad / 2)) / scale;
        float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale;
        float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale;

        // clip
        x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
        y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
        x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
        y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);

        objects[i].rect.x = x0;
        objects[i].rect.y = y0;
        objects[i].rect.width = x1 - x0;
        objects[i].rect.height = y1 - y0;
    }

    return 0;
}

static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
{
    static const char* class_names[] = {
            "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
            "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
            "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
            "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
            "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
            "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
            "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
            "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
            "hair drier", "toothbrush"
    };

    static const unsigned char colors[19][3] = {
            {54, 67, 244},
            {99, 30, 233},
            {176, 39, 156},
            {183, 58, 103},
            {181, 81, 63},
            {243, 150, 33},
            {244, 169, 3},
            {212, 188, 0},
            {136, 150, 0},
            {80, 175, 76},
            {74, 195, 139},
            {57, 220, 205},
            {59, 235, 255},
            {7, 193, 255},
            {0, 152, 255},
            {34, 87, 255},
            {72, 85, 121},
            {158, 158, 158},
            {139, 125, 96}
    };

    int color_index = 0;

    cv::Mat image = bgr.clone();

    for (size_t i = 0; i < objects.size(); i++)
    {
        const Object& obj = objects[i];

        const unsigned char* color = colors[color_index % 19];
        color_index++;

        cv::Scalar cc(color[0], color[1], color[2]);

        fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
                obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);

        cv::rectangle(image, obj.rect, cc, 2);

        char text[256];
        sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);

        int baseLine = 0;
        cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);

        int x = obj.rect.x;
        int y = obj.rect.y - label_size.height - baseLine;
        if (y < 0)
            y = 0;
        if (x + label_size.width > image.cols)
            x = image.cols - label_size.width;

        cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
                      cc, -1);

        cv::putText(image, text, cv::Point(x, y + label_size.height),
                    cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(255, 255, 255));
    }

    cv::imshow("image", image);
    cv::waitKey(0);
}

int main(int argc, char** argv)
{


    cv::Mat m = cv::imread("/home/ubuntu/workplace/ncnn/examples/bus.jpg");
    if (m.empty())
    {

        return -1;
    }

    std::vector<Object> objects;
    detect_yolov7(m, objects);

    draw_objects(m, objects);

    return 0;
}

参考源码https://github.com/Tencent/ncnn/tree/master/examples

模型需要改掉后面的param文件这三个红框改成-1,否则会出现乱框
在这里插入图片描述

效果图
在这里插入图片描述

2.mnn

目录结构:
在这里插入图片描述cmakelist.txt

cmake_minimum_required(VERSION 3.16)
project(untitled22)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")
set(CMAKE_CXX_STANDARD 11)
include_directories(${CMAKE_SOURCE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/include)
include_directories(${CMAKE_SOURCE_DIR}/include/MNN)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库

add_library(libmnn SHARED IMPORTED)
set_target_properties(libmnn PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/libMNN.so)


add_executable(untitled22 main.cpp)
target_link_libraries(untitled22 ${OpenCV_LIBS} libmnn )

main.cpp


#include <iostream>
#include <algorithm>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include<MNN/Interpreter.hpp>
#include<MNN/ImageProcess.hpp>
using namespace std;
using namespace cv;

typedef struct {
    int width;
    int height;
} YoloSize;


typedef struct {
    std::string name;
    int stride;
    std::vector<YoloSize> anchors;
} YoloLayerData;

class BoxInfo
{
public:
    int x1,y1,x2,y2,label,id;
    float score;
};

static inline float sigmoid(float x)
{
    return static_cast<float>(1.f / (1.f + exp(-x)));
}
double GetIOU(cv::Rect_<float> bb_test, cv::Rect_<float> bb_gt)
{
    float in = (bb_test & bb_gt).area();
    float un = bb_test.area() + bb_gt.area() - in;

    if (un < DBL_EPSILON)
        return 0;

    return (double)(in / un);
}
std::vector<BoxInfo> decode_infer(MNN::Tensor & data, int stride,  int net_size, int num_classes,
                                  const std::vector<YoloSize> &anchors, float threshold)
{
    std::vector<BoxInfo> result;
    int batchs, channels, height, width, pred_item ;
    batchs = data.shape()[0];
    channels = data.shape()[1];
    height = data.shape()[2];
    width = data.shape()[3];
    pred_item = data.shape()[4];

    auto data_ptr = data.host<float>();
    for(int bi=0; bi<batchs; bi++)
    {
        auto batch_ptr = data_ptr + bi*(channels*height*width*pred_item);
        for(int ci=0; ci<channels; ci++)
        {
            auto channel_ptr = batch_ptr + ci*(height*width*pred_item);
            for(int hi=0; hi<height; hi++)
            {
                auto height_ptr = channel_ptr + hi*(width * pred_item);
                for(int wi=0; wi<width; wi++)
                {
                    auto width_ptr = height_ptr + wi*pred_item;
                    auto cls_ptr = width_ptr + 5;

                    auto confidence = sigmoid(width_ptr[4]);

                    for(int cls_id=0; cls_id<num_classes; cls_id++)
                    {
                        float score = sigmoid(cls_ptr[cls_id]) * confidence;
                        if(score > threshold)
                        {
                            float cx = (sigmoid(width_ptr[0]) * 2.f - 0.5f + wi) * (float) stride;
                            float cy = (sigmoid(width_ptr[1]) * 2.f - 0.5f + hi) * (float) stride;
                            float w = pow(sigmoid(width_ptr[2]) * 2.f, 2) * anchors[ci].width;
                            float h = pow(sigmoid(width_ptr[3]) * 2.f, 2) * anchors[ci].height;

                            BoxInfo box;

                            box.x1 = std::max(0, std::min(net_size, int((cx - w / 2.f) )));
                            box.y1 = std::max(0, std::min(net_size, int((cy - h / 2.f) )));
                            box.x2 = std::max(0, std::min(net_size, int((cx + w / 2.f) )));
                            box.y2 = std::max(0, std::min(net_size, int((cy + h / 2.f) )));
                            box.score = score;
                            box.label = cls_id;
                            result.push_back(box);
                        }
                    }
                }
            }
        }
    }

    return result;
}

void nms(std::vector<BoxInfo> &input_boxes, float NMS_THRESH) {
    std::sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
    std::vector<float> vArea(input_boxes.size());
    for (int i = 0; i < int(input_boxes.size()); ++i) {
        vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
                   * (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
    }
    for (int i = 0; i < int(input_boxes.size()); ++i) {
        for (int j = i + 1; j < int(input_boxes.size());) {
            float xx1 = std::max(input_boxes[i].x1, input_boxes[j].x1);
            float yy1 = std::max(input_boxes[i].y1, input_boxes[j].y1);
            float xx2 = std::min(input_boxes[i].x2, input_boxes[j].x2);
            float yy2 = std::min(input_boxes[i].y2, input_boxes[j].y2);
            float w = std::max(float(0), xx2 - xx1 + 1);
            float h = std::max(float(0), yy2 - yy1 + 1);
            float inter = w * h;
            float ovr = inter / (vArea[i] + vArea[j] - inter);
            if (ovr >= NMS_THRESH) {
                input_boxes.erase(input_boxes.begin() + j);
                vArea.erase(vArea.begin() + j);
            } else {
                j++;
            }
        }
    }
}
void scale_coords(std::vector<BoxInfo> &boxes, int w_from, int h_from, int w_to, int h_to)
{
    float w_ratio = float(w_to)/float(w_from);
    float h_ratio = float(h_to)/float(h_from);


    for(auto &box: boxes)
    {
        box.x1 *= w_ratio;
        box.x2 *= w_ratio;
        box.y1 *= h_ratio;
        box.y2 *= h_ratio;
    }
    return ;
}

cv::Mat draw_box(cv::Mat & cv_mat, std::vector<BoxInfo> &boxes, const std::vector<std::string> &labels,unsigned char colors[][3])
{

    for(auto box : boxes)
    {
        int width = box.x2-box.x1;
        int height = box.y2-box.y1;
        cv::Point p = cv::Point(box.x1, box.y1);
        cv::Rect rect = cv::Rect(box.x1, box.y1, width, height);
        cv::rectangle(cv_mat, rect, cv::Scalar(colors[box.label][0],colors[box.label][1],colors[box.label][2]));
        string text = labels[box.label] + ":" + std::to_string(box.score) ;
        cv::putText(cv_mat, text, p, cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(colors[box.label][0],colors[box.label][1],colors[box.label][2]));
    }
    return cv_mat;
}

int main(int argc, char **argv) {


    std::vector<std::string> labels = {
            "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
            "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
            "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
            "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
            "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
            "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
            "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
            "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
            "hair drier", "toothbrush"
    };
    unsigned char colors[][3] = {
            {255, 0, 0}
    };

    cv::Mat bgr = cv::imread("/home/ubuntu/workplace/ncnn/examples/bus.jpg");;// 预处理和源码不太一样,所以影响了后面的

    int target_size = 640;

    cv::Mat resize_img;
    cv::resize(bgr, resize_img, cv::Size(target_size, target_size));
    float cls_threshold = 0.25;

    // MNN inference
    auto mnnNet = std::shared_ptr<MNN::Interpreter>(
            MNN::Interpreter::createFromFile("/home/ubuntu/workplace/pycharm_project/yolov7/yolov7.mnn"));
    auto t1 = std::chrono::steady_clock::now();
    MNN::ScheduleConfig netConfig;
    netConfig.type = MNN_FORWARD_CPU;
    netConfig.numThread = 4;

    auto session = mnnNet->createSession(netConfig);
    auto input = mnnNet->getSessionInput(session, "images");

    mnnNet->resizeTensor(input, {1, 3, (int) target_size, (int) target_size});
    mnnNet->resizeSession(session);
    MNN::CV::ImageProcess::Config config;

    const float mean_vals[3] = {0, 0, 0};

    const float norm_255[3] = {1.f / 255, 1.f / 255.f, 1.f / 255};

    std::shared_ptr<MNN::CV::ImageProcess> pretreat(
            MNN::CV::ImageProcess::create(MNN::CV::BGR, MNN::CV::RGB, mean_vals, 3,
                                          norm_255, 3));

    pretreat->convert(resize_img.data, (int) target_size, (int) target_size, resize_img.step[0], input);


    mnnNet->runSession(session);

    std::vector<YoloLayerData> yolov7_layers{
            {"528",    32, {{142, 110}, {192, 243}, {459, 401}}},
            {"516",    16, {{36,  75}, {76,  55},  {72,  146}}},
            {"output", 8,  {{12,  16}, {19,  36},  {40,  28}}},
    };

    auto output = mnnNet->getSessionOutput(session, yolov7_layers[2].name.c_str());

    MNN::Tensor outputHost(output, output->getDimensionType());
    output->copyToHostTensor(&outputHost);

    //毫秒级
    std::vector<float> vec_scores;
    std::vector<float> vec_new_scores;
    std::vector<int> vec_labels;
    int outputHost_shape_c = outputHost.channel();
    int outputHost_shape_d = outputHost.dimensions();
    int outputHost_shape_w = outputHost.width();
    int outputHost_shape_h = outputHost.height();

    printf("shape_d=%d shape_c=%d shape_h=%d shape_w=%d outputHost.elementSize()=%d\n", outputHost_shape_d,
           outputHost_shape_c, outputHost_shape_h, outputHost_shape_w, outputHost.elementSize());
    auto yolov7_534 = mnnNet->getSessionOutput(session, yolov7_layers[1].name.c_str());

    MNN::Tensor output_534_Host(yolov7_534, yolov7_534->getDimensionType());
    yolov7_534->copyToHostTensor(&output_534_Host);


    outputHost_shape_c = output_534_Host.channel();
    outputHost_shape_d = output_534_Host.dimensions();
    outputHost_shape_w = output_534_Host.width();
    outputHost_shape_h = output_534_Host.height();
    printf("shape_d=%d shape_c=%d shape_h=%d shape_w=%d output_534_Host.elementSize()=%d\n", outputHost_shape_d,
           outputHost_shape_c, outputHost_shape_h, outputHost_shape_w, output_534_Host.elementSize());

    auto yolov7_554 = mnnNet->getSessionOutput(session, yolov7_layers[0].name.c_str());

    MNN::Tensor output_544_Host(yolov7_554, yolov7_554->getDimensionType());
    yolov7_554->copyToHostTensor(&output_544_Host);


    outputHost_shape_c = output_544_Host.channel();
    outputHost_shape_d = output_544_Host.dimensions();
    outputHost_shape_w = output_544_Host.width();
    outputHost_shape_h = output_544_Host.height();
    printf("shape_d=%d shape_c=%d shape_h=%d shape_w=%d output_544_Host.elementSize()=%d\n", outputHost_shape_d,
           outputHost_shape_c, outputHost_shape_h, outputHost_shape_w, output_544_Host.elementSize());


    std::vector<YoloLayerData> & layers = yolov7_layers;

    std::vector<BoxInfo> result;
    std::vector<BoxInfo> boxes;
    float threshold = 0.5;
    float nms_threshold = 0.7;



    boxes = decode_infer(outputHost, layers[2].stride, target_size, labels.size(), layers[2].anchors, threshold);
    result.insert(result.begin(), boxes.begin(), boxes.end());

    boxes = decode_infer(output_534_Host, layers[1].stride, target_size, labels.size(), layers[1].anchors, threshold);
    result.insert(result.begin(), boxes.begin(), boxes.end());

    boxes = decode_infer(output_544_Host, layers[0].stride, target_size, labels.size(), layers[0].anchors, threshold);
    result.insert(result.begin(), boxes.begin(), boxes.end());

    nms(result, nms_threshold);
    scale_coords(result, target_size, target_size, bgr.cols, bgr.rows);
    cv::Mat frame_show = draw_box(bgr, result, labels,colors);
    cv::imshow("out",bgr);
    cv::imwrite("dp.jpg",bgr);
    cv::waitKey(0);
    mnnNet->releaseModel();
    mnnNet->releaseSession(session);
    return 0;
}

总结

前后处理是硬功夫,加油!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/596427.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何基于G6进行双树流转绘制? | 京东云技术团队

1. 背景 业务背景&#xff1a;CRM系统随着各业务条线对线索精细化分配的诉求逐渐增加&#xff0c;各个条线的流向规则会越来越复杂&#xff0c;各个条线甚至整个CRM的线索流转规则急需一种树形的可视化的图来表达。 技术背景&#xff1a;在开发之前考虑了三种方案&#xff0c;…

选什么样的软件平台开发能让办公效率得到提升?

在当今快节奏的时代中&#xff0c;办公自动化发展已成为趋势&#xff0c;采用什么样的软件平台开发能让办公效率得到大大提升&#xff1f;面对众多粉丝朋友提出的问题&#xff0c;作为低代码开发平台服务商&#xff0c;流辰信息有责任有义务与大家分享好产品。因为这是能提升办…

GPT现状终于有人讲清楚了!OpenAI大牛最新演讲爆火,还得是马斯克钦点的天才

量子位 | 公众号 QbitAI 继Windows Copilot发布后&#xff0c;微软Build大会热度又被一场演讲引爆。 前特斯拉AI总监Andrej Karpathy在演讲中认为思维树&#xff08;tree of thoughts&#xff09;与AlphaGo的蒙特卡洛树搜索&#xff08;MCTS&#xff09;有异曲同工之妙&#…

MySQL数据库 4.SQL通用语法及分类

目录 &#x1f914;SQL通用语法&#xff1a; &#x1f60a;语句&#xff1a; &#x1f60a;注释&#xff1a; &#x1f914;SQL语句分类&#xff1a; &#x1f60a;1.DDL语句&#xff1a; &#x1f60a;2.DML语句&#xff1a; &#x1f60a;3.DQL语言&#xff1a; &…

springboot+vue+element-ui在线招投标系统

本在线招投标系统管理员管理个人中心&#xff0c;投标人管理&#xff0c;招标人管理&#xff0c;评标人管理&#xff0c;招标信息管理&#xff0c;投标信息管理&#xff0c;评标信息管理&#xff0c;中标信息管理&#xff0c;系统管理。管理员负责所有的管理信息&#xff0c;招…

DAY06_Mybatis

目录 1 MyBatis1.1 快速入门1.1.1 创建user表&#xff0c;添加数据1.1.2 创建模块&#xff0c;导入坐标1.1.3 编写 MyBatis 核心配置文件1.1.4 编写 SQL 映射文件1.1.5 编码 1.2 解决SQL映射文件的警告提示1.3 Mapper代理开发1.3.1 定义与SQL映射文件同名的Mapper接口&#xff…

NFS网络文件挂载【虚拟机到开发板】

注意&#xff1a;首先要确保虚拟机和开发板之间可以互相访问&#xff0c;即配置桥接网卡&#xff0c;如果在同一个网段下但是无法ping通可能是防火墙的问题。可以查看博文解决&#xff1a;vmware虚拟机设置双网卡 注意&#xff1a;当前虚拟机版本为18.04&#xff0c;若虚拟机版…

焊接铁件的一些常识

焊接整体过程 简单来说就是通过各种方式将金属熔化后冷却结合。而焊接过程中一般会有保护气体&#xff0c;例如氩气&#xff0c;二氧化碳。就是常听到的氩弧焊和二保焊。而最常见的是药皮包裹着金属心的焊条&#xff0c;而焊条的药皮就是加热后产生了保护气。弧光是焊条和焊件…

UnaBiz与纵行科技签署战略合作协议 为海量物联共建“融合的LPWAN全球网络”

新加坡、法国、中国&#xff0c;2023年5月30日&#xff0c;UnaBiz和纵行科技签署了战略合作协议&#xff0c;致力于促进“融合的LPWAN全球网络”的发展以实现全球大规模物联网。根据协议&#xff0c;UnaBiz和纵行科技将充分利用各自的网络资源&#xff0c;其中ZETA网络覆盖中国…

走进Linux编程的大门

随着Linux的不断普及,使用Linux的人也越来越多了。然而在Linux中如何进行程序设计,用什么样的开发工具好呢?本文就以我初学Linux编程的一点心得体会,和大家共同探讨。 在Linux中进行程序设计&#xff0c;可以使用各种编程语言和开发工具&#xff0c;以下是一些常用的方法&…

eBay如何实现多账号登录以及防关联?

随着跨境电商的快速发展&#xff0c;亚马逊&#xff0c;eBay已成为人们熟知的电商平台。“不把鸡蛋放在同一个篮子里”&#xff0c;多账号运营店铺有许多显而易见的好处。 但由于亚马逊平台封号状况愈演愈烈&#xff0c;不少卖家把战线转移到了eBay平台。随着入驻人数的增加&a…

windows安装minio

官方下载地址&#xff1a; MinIO | Code and downloads to create high performance object storage 官方快速入门文档&#xff1a; MinIO Object Storage for Windows — MinIO Object Storage for Windows 概述 最近熟悉公司框架&#xff0c;有使用到MinIO,故学习并记录总…

软考A计划-网络规划设计师-核心考点解密

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分享&am…

性能测试设计阶段

性能测试设计阶段 性能测试是软件测试中的关键环节&#xff0c;它可以帮助我们评估软件系统在压力下的运行稳定性和性能表现。性能测试设计阶段是性能测试的基础&#xff0c;只有经过充分的设计&#xff0c;才能保证性能测试的有效性和准确性。 在性能测试设计阶段&#xff0c;…

C++STL之vector与list

文章目录 关于vector的用法关于List的用法vector和list的区别 关于vector的用法 #include<stdio.h> #include<iostream> #include<string.h> #include<vector> using namespace std;class PtrInt {int* ptr; public:PtrInt(int x 0) :ptr(new int[x]…

海外跨境电商商城源码-进出口电商平台网站-多语言多商户平台

欢迎探讨&#xff0c;名片交流 一、海外跨境电商系统源码包括以下几个部分&#xff1a; 前端&#xff1a;React框架、Bootstrap 后端&#xff1a;Node.js&#xff0c;Express框架、NoSQL数据库 支付系统&#xff1a;Stripe、PayPal等主流支付平台 物流系统&#xff1a;DHL…

idea 打开项目代码出错,但是编译没问题

一、说明 在使用idea的时候发现有时候编译没问题&#xff0c;代码没问题&#xff0c;但是就是项目报红&#xff1b;然后就找了一下解决方法&#xff0c;总结一下然后发一下博客给说明一下吧 二、问题和说明 1.问题 经常出现在pom的引入版本升级和版本依赖有修改 2.解决 2.…

Benewake(北醒) 单点TF系列雷达【通用指令串口助手】使用说明

目录 硬件准备1:连接设备2:串口连接以及读数 常见问题1 连接串口后无数据 硬件准备 1:连接设备 连接『TF系列产品』、『TTL - USB 转接板』和『USB 线』&#xff0c;确保无松动&#xff0c;再将『USB 线』与『电脑』连接。 2:串口连接以及读数 1.打开串口助手&#xff0c;选…

Zabbix 5.0如何升级至6.0?操作文档

Zabbix5.0升级至6.0的认证培训&#xff0c;仅需6小时&#xff08;无需5天&#xff09;点击报名。 感谢本文作者王会新&#xff0c;ZCP-Zabbix高级认证工程师 目录 1.方案说明 2.环境说明 3.Mysql环境部署 3.1 mysql安装 3.2 配置mysql 3.3 创建zabbix库 4.Zabbix Server升…

国产GPU重要应用场景迎来突破!摩尔线程发布重磅产品与创新解决方案

5月31日&#xff0c;摩尔线程举办2023夏季发布会&#xff0c;重磅宣布了一系列新产品与技术更新&#xff0c;涵盖数字办公、娱乐与创作、AI与云计算以及元宇宙等GPU重要应用场景&#xff0c;标志着摩尔线程为用户提供的高品质、易部署、创新性应用型解决方案取得重大进展。 主…