初学prometheus监控(一)

news2025/1/11 14:24:59

初学prometheus监控(一)

1、promethues 介绍

1.1 监控的分类

监控重要性由高到低

  • 业务监控:公司领导比较关心的指标,如电商平台的订单数量,用户的日活等
  • 系统监控:主要是跟操作系统相关的基本监控项,比如CPU,内存,硬盘,IO,TCP链接,流量等等
  • 网络监控:对网络状态的监控(交换机,路由器,防火墙,VPN等),互联网公司必不可少,但是很多时候又被忽略,例如:IDC机房内网之间,外网之间的丢包率,延迟等等。
  • 日志监控:监控中的重头戏,往往单独设计和搭建,全部种类的日志都有需要采集,常见的解决方案如Elstic stack(有免费版),Splunk(付费版)等。
  • 程序监控:一般需要和开发人员配合,程序中嵌入各种接口,直接获取数据或者特质的日志格式。

1.2 promethues 优点

Prometheus是一个开源的完整监控解决方案,其对传统监控系统的测试和告警模型进行了彻底的颠覆,形成了基于中央化的规则计算、统一分析和告警的新模型。

相比于传统监控系统Prometheus具有以下优点:

  • 易于管理
    • Prometheus核心部分只有一个单独的二进制文件,不存在任何的第三方依赖(数据库,缓存等等)。唯一需要的就是本地磁盘,因此不会有潜在级联故障的风险。
    • Prometheus基于Pull模型的架构方式,可以在任何地方(本地电脑,开发环境,测试环境)搭建我们的监控系统。对于一些复杂的情况,还可以使用Prometheus服务发现(Service Discovery)的能力动态管理监控目标。
  • 监控服务的内部运行状态
    • Pometheus鼓励用户监控服务的内部状态,基于Prometheus丰富的Client库,用户可以轻松的在应用程序中添加对Prometheus的支持,从而让用户可以获取服务和应用内部真正的运行状态。
  • 时间序列(time series)
    • 所谓的时间序列(time series)指的是一系列有序的数据,通常是指等时间间隔的采样数据,说白了就是分为X和Y轴,其中X轴是按照时间间隔进行推进,而Y轴是有序的数字。
  • 强大的数据模型
    • 所有采集的监控数据均以指标(metric)的形式保存在内置的时间序列数据库当中(TSDB)。所有的样本除了基本的指标名称以外,还包含一组用于描述该样本特征的标签。
  • 强大的查询语言PromQL
    • Prometheus内置了一个强大的数据查询语言PromQL。 通过PromQL可以实现对监控数据的查询、聚合。同时PromQL也被应用于数据可视化(如Grafana)以及告警当中。
    • 通过PromQL可以轻松回答类似于以下问题:
      1>.在过去一段时间中95%应用延迟时间的分布范围?
      2>.预测在4小时后,磁盘空间占用大致会是什么情况?
      3>.CPU占用率前5位的服务有哪些?(过滤)
  • 高效
    • 对于监控系统而言,大量的监控任务必然导致有大量的数据产生。而Prometheus可以高效地处理这些数据,对于单一Prometheus Server实例而言它可以处理:数以百万的监控指标和每秒处理数十万的数据点。而zabbix对此相对来说就有点吃力了;
  • 可扩展(支持集群)
    • Prometheus是如此简单,因此你可以在每个数据中心、每个团队运行独立的Prometheus Sevrer。
    • Prometheus对于联邦集群的支持,可以让多个Prometheus实例产生一个逻辑集群,当单实例Prometheus Server处理的任务量过大时,通过使用功能分区(sharding)+联邦集群(federation)可以对其进行扩展。
  • 易于集成
    • 使用Prometheus可以快速搭建监控服务,并且可以非常方便地在应用程序中进行集成。目前支持: "Java","JMX","Python","Go","Ruby",".Net", "Node.js"等等语言的客户端SDK,基于这些SDK可以快速让应用程序纳入到Prometheus的监控当中,或者开发自己的监控数据收集程序。同时这些客户端收集的监控数据,不仅仅支持Prometheus,还能支持Graphite这些其他的监控工具。
    • 同时Prometheus还支持与其他的监控系统进行集成:"Graphite", "Statsd", "Collected", "Scollector", "muini", "Nagios"等。
    • Prometheus社区还提供了大量第三方实现的监控数据采集支持:"JMX", "CloudWatch", "EC2","MySQL","PostgresSQL", "Haskell", "Bash", "SNMP", "Consul", "Haproxy", "Mesos", "Bind", "CouchDB", "Django", "Memcached", "RabbitMQ", "Redis", "RethinkDB", "Rsyslog"等等。
  • 可视化
    • Prometheus Server中自带了一个Prometheus UI,通过这个UI可以方便地直接对数据进行查询,并且支持直接以图形化的形式展示数据。
    • 同时Prometheus还提供了一个独立的基于Ruby On Rails的Dashboard解决方案Promdash。
    • 最新的Grafana可视化工具也已经提供了完整的Prometheus支持,基于Grafana可以创建更加精美的监控图标。基于Prometheus提供的API还可以实现自己的监控可视化UI。
  • 开放性
    • 通常来说当我们需要监控一个应用程序时,一般需要该应用程序提供对相应监控系统协议的支持。因此应用程序会与所选择的监控系统进行绑定。为了减少这种绑定所带来的限制。对于决策者而言要么你就直接在应用中集成该监控系统的支持,要么就在外部创建单独的服务来适配不同的监控系统。
    • 而对于Prometheus来说,使用Prometheus的client library的输出格式不止支持Prometheus的格式化数据,也可以输出支持其它监控系统的格式化数据,比如Graphite。
    • 因此你甚至可以在不使用Prometheus的情况下,采用Prometheus的client library来让你的应用程序支持监控数据采集。

Prometheus除了上述说到的优点,其实也有以下不足之处:

  • 学习成本太大,尤其是其独有的数学命令行,学习起来很吃力,而且全是英文文档;
  • 对磁盘资源也是耗费的较大,这个具体要看监控的集群量和监控项的多少和保存时间的长短;
  • 有网友称在1.x版本中可能会发生数据丢失的风险,因此生产环境中建议大家使用较新的2.x发行版;

温馨提示:

  • zabbix采用的是MySQL数据库,Prometheus采用的是时间序列数据库,由于监控数据并不需要更新,监控数据会存在大量的写入和查询,其底层实现会更高,具体细节原理可自行查阅资料,Prometheus是支持外部数据库存储的,但我觉得完全没有必要在生产环境中这样做;
  • 如果上述10点还不足以打动你学习Prometheus,那我再说一点比较现实的,国内目前很多中小企业都在使用Prometheus监控docker,Kubernetes,学习它有助于咱们找工作。

1.3 promethues 使用场景

适用的场景(When does it fit?)

  • Prometheus适用于记录任何纯数字时间序列。它既适合以机器为中心的监控,也适合监控高度动态的面向服务的架构。在微服务的世界中,它对多维数据收集和查询的支持是一个特殊的优势。
  • Prometheus是为可靠性而设计的,它是您在中断期间访问的系统,让您能够快速诊断问题。每个 Prometheus服务器都是独立的,不依赖于网络存储或其他远程服务。当基础架构的其他部分损坏时,您可以依赖它,并且您无需设置大量基础架构即可使用它。(请记住该点,这是优点也是缺点哟~)

不适用的场景(When does it not fit?)

  • 如上所示,Prometheus重视可靠性。即使在出现故障的情况下,您也可以随时查看有关系统的可用统计信息。
  • 如果您需要100%的准确性,例如按请求计费,Prometheus不是一个好的选择,因为收集的数据可能不够详细和完整。在这种情况下,您最好使用其他系统来收集和分析计费数据,并使用Prometheus进行其余的监控。

推荐阅读:https://prometheus.io/docs/introduction/overview/#when-does-it-fithttps://prometheus.io/docs/introduction/overview/#when-does-it-not-fit

1.4 promethues 宏观架构图

图片.png-501.8kB

如下图所示,展示了普罗米修斯(prometheus)的建筑和它的一些生态系统组成部分。

  • Prometheus server:
    • prometheus的服务端,负责收集指标和存储时间序列数据,并提供查询接口。
  • exporters:
    • 如果想要监控,前提是能获取被监控端数据,并且这个数据格式必须遵循Prometheus数据模型,这样才能识别和采集,一般使用exporter数据采集器(类似于zabbix_agent端)提供监控指标数据。
    • exporter数据采集器,除了官方和GitHub提供的常用组件exporter外,我们也可以为自己自研的产品定制exporters组件哟。
  • Pushgateway:
    • 短期存储指标数据,主要用于临时性的任务。比如备份数据库任务监控等。
    • 本质上我们可以理解为Pushgateway可以帮咱们监控自定义的监控项,这需要咱们自己编写脚本来推送到Pushgateway端,而后由Prometheus
      server从Pushgateway去pull监控数据。
    • 换句话说,请不要被官方的架构图蒙骗了,咱们完全可以基于Pushgateway来监控咱们自定义的监控项哟,这些监控项完全可以是长期运行的呢!
  • Service discovery:
    • 服务发现,例如我们可以配置动态的服务监控,无需重启Prometheus server实例就能实现动态监控。
  • Alertmanager:
    • 支持报警功能,比如可以支持基于邮件,微信,钉钉报警。
    • 据网友反馈该组件在生产环境中存在缺陷,因此我们可以考虑使用Grafana来展示并实现报警功能。
  • Prometheus Web UI
    • Prometheus比较简单的Web控制台,通常我们可以使用grafana来集成做更漂亮的Web展示哟。

温馨提示:
大多数Prometheus组件都是用Go编写的,这使得它们易于构建和部署为静态二进制文件。

2、部署服务端

Prometheus包 下载链接图片.png-302.1kB

2.1 下载安装包

[root@prometheus ~]# wget https://github.com/prometheus/prometheus/releases/download/v2.44.0/prometheus-2.44.0.linux-amd64.tar.gz

2.2 解压启动

[root@prometheus ~]# tar xf prometheus-2.44.0.linux-amd64.tar.gz
[root@prometheus ~]# mv prometheus-2.44.0.linux-amd64 /usr/local/prometheus

2.3 编辑配置文件

[root@prometheus ~]# vim /usr/local/prometheus/prometheus.yml
[root@prometheus ~]# cat /usr/local/prometheus/prometheus.yml
#全局配置
global:
#设置prometheus采集数据的间隔时间,默认是1分钟。通常该值设置15秒就够用了。如果设置的间隔时间过短可能会造成更多的存储空间哟。
  scrape_interval: 30s
#监控数据规则的评估评论,默认值为每1分钟。通常该值设置每15秒评估一次规则就够用了。
  evaluation_interval: 30s

# Alertmanager configuration(先战略性忽略)

# 抓取数据的配置 
scrape_configs:
#定义任务的名称
  - job_name: "prometheus"
    #定义静态的配置,比如使用targets指定要监控的对象
    static_configs:
      - targets: [localhost:9100]

#定义基于文件的动态配置,比如使用files指定文件路径,使用refresh_interval指定监控的间隔时间
#      - file_sd_configs:

  - job_name: "ceshi"
    static_configs:
      - targets: [192.168.200.15:9100]

有关自动发现的配置

  • azure_sd_configs
  • consul_sd_configs
  • dns_sd_configs
  • ec2_sd_configs
  • openstack_sd_configs
  • file_sd_configs
  • gce_sd_configs
  • kubernetes_sd_configs
  • marathon_sd_configs
  • nerve_sd_configs
  • serverset_sd_configs
  • triton_sd_configs

2.4 使用后台启动

[root@prometheus ~]# cd /usr/local/prometheus/
[root@prometheus prometheus]# nohup ./prometheus &>/var/log/prometheus.log &

3、部署node exporter 客户端 监控软件

3.1 安装包下载

node exporter包 下载链接

图片.png-196.5kB

[root@prometheus 1]# wget https://github.com/prometheus/node_exporter/releases/download/v1.6.0/node_exporter-1.6.0.linux-amd64.tar.gz

3.2 解压使用

[root@prometheus ~]# tar xf node_exporter-1.6.0.linux-amd64.tar.gz 
[root@prometheus ~]# mv node_exporter-1.6.0.linux-amd64 /usr/local/node_exporter

3.3 后台启动

[root@prometheus ~]# cd /usr/local/node_exporter/
[root@prometheus node_exporter]# nohup ./node_exporter &>/var/log/node_exporter.log &

3.4 查看监控数据

http://192.168.200.15:9090/targets?search=

图片.png-126.5kB

3.5 查看node exports 实例采集的metrics指标

访问:http://192.168.200.15:9100/metrics

图片.png-259.8kB

官方文档:

  • 默认启用的采集器:https://github.com/prometheus/node_exporter#enabled-by-default
  • 默认禁用的采集器:https://github.com/prometheus/node_exporter#disabled-by-default
  • 温馨提示:对于中小型企业,推荐大家使用默认的采集器启用的采集器即可,基本上也够咱们使用了,除非你要开启监控一些特殊的数据,可以启用对应的采集器。

3.6 metrics 简单介绍

3.6.1 metrics 简单介绍

  • 在Prometheus监控中,对于采集到服务端的指标数据,统一称为metrics数据。
  • metrics是一种对采样数据的总称,其并不代表一种具体的数据格式,而是一种对于度量计算单位的抽象。
  • 当我们需要为某个系统或者某个服务做监控,统计时,就需要用到metrics。
  • metrics指标为时间序列数据,它们按相同的时序,以时间维度来存储连续数据的集合。

3.6.2 metric格式

prometheus采集回来的指标数据(metric)是以key/value格式存储和展示可以通过curl localhost:9100/metrics获取key/value 值,如下:

[root@prometheus ~]# curl localhost:9100/metrics
...略...
node_cpu_seconds_total{cpu="0",mode="user"} 1.78
node_cpu_seconds_total{cpu="1",mode="idle"} 10053.3
node_cpu_seconds_total{cpu="1",mode="iowait"} 0.3
node_cpu_seconds_total{cpu="1",mode="irq"} 0
node_cpu_seconds_total{cpu="1",mode="nice"} 0.07
node_cpu_seconds_total{cpu="1",mode="softirq"} 0.28
node_cpu_seconds_total{cpu="1",mode="steal"} 0
node_cpu_seconds_total{cpu="1",mode="system"} 7.34
node_cpu_seconds_total{cpu="1",mode="user"} 6.3
node_cpu_seconds_total{cpu="2",mode="idle"} 10044.33
node_cpu_seconds_total{cpu="2",mode="iowait"} 0.05
node_cpu_seconds_total{cpu="2",mode="irq"} 0
node_cpu_seconds_total{cpu="2",mode="nice"} 0.03
node_cpu_seconds_total{cpu="2",mode="softirq"} 0.57
...略...

3.6.3 Metric类型

Prometheus的时序数据分为Gauge(仪表盘),Counter(计数器),Histogram(直方图)。

  • Gauge类型:
    • Gauge类型的指标用于展示瞬时的值,只有一个简单返回值,例如CPU、内存、硬盘容量等,用来反映目标在某个时间点的状态。
  • Counter类型
    • counter类型的指标与计数器一样,从0开始不断积累,趋势线上升或水平,如用户访问累积量、服务请求总量、错误总数等。
  • Histogram 类型
    • Histogram 统计数据的分布情况。比如最小值,最大值,中间值,中位数。75%,90%,92%,99.9% ,百分位值。特殊的 Metrics 数据类型,比例型数据,百分比估算数值。
    • 如我们平时用的比较多的针对请求响应时间的90线、95线,对于90分为值也就是P90,我们简单的可以这样理解,假设有100个请求,按照响应时间从小到大排序,第90个请求的响应时间3000ms就是P90值,也就是说有90%的请求响应时间小于3000ms。

4、 promethues 服务自动发现

我们在添加客户端后,每次需要手动去重启peomethues 服务端,这种方式是基于静态配置。使用promethues 自动发现(动态配置),则不需要重启服务端。

4.1 添加测试机器(以容器为例)

[root@prometheus ~]# docker images
REPOSITORY                         TAG       IMAGE ID       CREATED      SIZE
quay.io/prometheus/node-exporter   latest    173d3570a5af   3 days ago   22.7MB

[root@prometheus ~]# docker container run -dp 19100:9100 -v "/:/host:ro,rslave" --name=node_exporter2 quay.io/prometheus/node-exporter:latest --path.rootfs /host

4.2 编辑promethues.yml文件

[root@prometheus ~]# vim /usr/local/prometheus/prometheus.yml 
[root@prometheus ~]# cat /usr/local/prometheus/prometheus.yml
global:
  scrape_interval:     30s
  evaluation_interval: 30s

#基于文件实现动态配置
scrape_configs:
  - job_name: "auto_discovery_node_exporter"
    file_sd_configs:
    - files:
      - /usr/local/prometheus/discovery/node_exporter.yml
      #刷新间隔
      refresh_interval: 5s
#编辑自动发现文件
[root@prometheus ~]# mkdir -p /usr/local/prometheus/discovery
[root@prometheus ~]# vim /usr/local/prometheus/discovery/node_exporter.yml
[root@prometheus ~]# cat /usr/local/prometheus/discovery/node_exporter.yml
[
  {
    "targets":  ["192.168.200.15:19100"]
 # 可监控多个
 # "targets":  ["192.168.200.15:8080","192.168.200.15:18080"]
  }
]

4.3 重启promethues

# kill掉旧进程
[root@prometheus ~]# ps -ef|grep prometheus|grep -v grep|awk '{print $2}'|xargs -i kill -9 {}

# 重启promethues
[root@prometheus ~]# cd /usr/local/prometheus/
[root@prometheus prometheus]# nohup ./prometheus &>/var/log/prometheus.log &

后期就不用再次重启配置文件了,只需要修改/usr/local/prometheus/discovery/node_exporter.yml
promethues 会每隔5s读取文件(refresh_interval: 5s)

图片.png-108.3kB

4.4 cadvisor 容器的自动发现

4.4.1 cadvisor 容器介绍

docker stats 可以查看容器的运行状态,但是数据比较原始且没有界面,数据可视化还需要做大量的工作

[root@prometheus ~]# docker stats node_exporter2

CONTAINER ID   NAME             CPU %     MEM USAGE / LIMIT     MEM %     NET I/O          BLOCK I/O   PIDS
7e3f17d58d01   node_exporter2   0.00%     11.84MiB / 3.682GiB   0.31%     14.7kB / 232kB   0B / 0B     5

CONTAINER ID   NAME             CPU %     MEM USAGE / LIMIT     MEM %     NET I/O          BLOCK I/O   PIDS
7e3f17d58d01   node_exporter2   0.00%     11.84MiB / 3.682GiB   0.31%     14.7kB / 232kB   0B / 0B     5

CONTAINER ID   NAME             CPU %     MEM USAGE / LIMIT     MEM %     NET I/O          BLOCK I/O   PIDS
7e3f17d58d01   node_exporter2   0.00%     11.84MiB / 3.682GiB   0.31%     14.7kB / 232kB   0B / 0B     5

4.4.2 cadvisor 容器启动

[root@prometheus ~]# docker run \
  --volume=/:/rootfs:ro \
  --volume=/var/run:/var/run:rw \
  --volume=/sys:/sys:ro \
  --volume=/var/lib/docker/:/var/lib/docker:ro \
  --volume=/dev/disk/:/dev/disk:ro \
  --publish=18104:8080\
  --detach=true \
  --name=cadvisor \
  google/cadvisor:latest

4.4.3 cadvisor 使用介绍

cadvisor部分界面如下:

图片.png-127kB

grafana容器内CPU,内存,网络,磁盘信息

图片.png-145.3kB

图片.png-117.5kB

4.4.4 结合promethues 动态配置(file_sd_configs)使用

配置promethues 动态发现

[root@prometheus ~]# cat /usr/local/prometheus/discovery/node_exporter.yml
[
  {
    "targets":  ["192.168.200.15:19100","192.168.200.15:18104"]
  }
]

查看数据

图片.png-77.5kB

图片.png-164.9kB

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/596046.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ChatGPT能解决信息抽取吗?一份关于性能、评估标准、鲁棒性和错误的分析

深度学习自然语言处理 原创作者:qazw 信息抽取(IE)旨在从非结构化文本中抽取出结构化信息,该结果可以直接影响很多下游子任务,比如问答和知识图谱构建。因此,探索ChatGPT的信息抽取能力在一定程度上能反映出ChatGPT生成回复时对任…

Office project 2019安装

哈喽,大家好。今天一起学习的是project 2019的安装,Microsoft Office project项目管理工具软件,凝集了许多成熟的项目管理现代理论和方法,可以帮助项目管理者实现时间、资源、成本计划、控制。有兴趣的小伙伴也可以来一起试试手。…

英伟达股票大涨,对应 GPU 产品有哪些型号?

英伟达(NVIDIA)是一家知名的 GPU(图形处理器)制造商,其 GPU 产品线非常丰富,涵盖了从消费级到专业级的各种型号。 最近英伟达股票大涨,高端 GPU 供不应求,搞大模型的团队都要疯狂进货…

机器学习入门基础:机器学习实践

目录 7.1 数据集划分 7.1.1 训练集、验证集和测试集划分7.1.2 交叉验证7.1.3 不平衡数据处理7.2 评价指标 7.2.1 回归的评价指标7.2.2 分类的评价指标7.2.3 评价指标案例7.3 正则化、偏差和方差 7.3.1 欠拟合和过拟合7.3.2 正则化7.3.3 偏差和方差参考文献 7.1 数据集划分 7.1…

通过python采集1688app商品详情数据,1688app商品详情数据接口,1688API接口

要通过Python采集1688app商品详情数据,你可以使用以下步骤: 安装必要的 Python 模块:requests, BeautifulSoup4 和 lxml。使用 requests 模块发送 HTTP 请求获取网站 HTML 内容。使用 BeautifulSoup4 模块解析 HTML 页面并提取所需的数据。编…

主路由设置静态路由后,能ping通,但无法访问网页服务和ssh等

主路由设置静态路由后,能ping通,但无法访问网页服务和ssh等 静态路由 主路由是istoreos软路由, AP使用华为AX3路由器做ap和wifi, 二级路由使用蒲公英路由X5 前置条件:已在主路由设置静态路由 静态路由 问 主路由设置静…

项目管理新手常见误区揭秘~

点击上方 "JavaEdge"关注, 星标或置顶一起成长 后台回复“面试”有惊喜礼包! 这是一个纷杂而无规则的世界,越想忘掉的事情,越难忘记。 如何完成新手项目经理的角色转换呢? 成为项目经理前,我做了四五年的“码…

一起看 I/O | Jetpack 新功能一览

作者 / Android 产品经理 Amanda Alexander Android Jetpack 是现代 Android 开发 (Modern Android Development) 的关键组成支柱。Android Jetpack 套件包含超 100 个库、工具及指南,可帮助开发者遵循最佳实践、减少样板代码,并编写可在各种 Android 版…

chatgpt赋能python:Python修改配置文件:实现自动配置与简化运维

Python修改配置文件:实现自动配置与简化运维 介绍 配置文件是软件开发中不可缺少的一部分,它不仅包含应用程序的基本设置,还提供了一种简单的方式来管理这些设置。如何有效地修改配置文件已经成为了每个开发者必备的技能之一,而…

这8个NumPy函数可以解决90%的常见问题

NumPy是一个用于科学计算和数据分析的Python库,也是机器学习的支柱。可以说NumPy奠定了Python在机器学习中的地位。NumPy提供了一个强大的多维数组对象,以及广泛的数学函数,可以对大型数据集进行有效的操作。这里的“大”是指数百万行。 Nump…

MGR网络抖动问题分析和group_replication_unreachable_majority_timeout等参数分析

导言 本文主要从测试的角度来阐明group_replication_unreachable_majority_timeout和group_replication_member_expel_timeout参数对集群网络分区的影响,首先这里放一张大图,为多年前学习MGR的时候留下的,也就是这两个参数对集群的影响&…

穷途末路的阿里中台

观点| Mr.K 主笔| Wendy.L 来源| 技术领导力(ID:jishulingdaoli) 对于关注K哥公众号多年的朋友来说,“中台”早就是老生常谈的东西了,如果你还不知道它是什么,可以看看之前的中台文章先恶补一下。 关于中台,这些年翻…

chatgpt赋能python:Python倒序range的完整指南

Python倒序range的完整指南 Python是一种高级编程语言,很多人认为它非常容易学习和使用。其中一个非常有用的功能是range()函数,可以生成数字序列。然而,有时候我们需要以相反的顺序生成这个数字序列,这时候倒序range()函数就派上…

5G NTN技术概述及演进分析(下)

5G NTN因其广泛的服务覆盖能力、应对物理攻击或自然灾害的健壮性和灵活性,在交通、公共安全、电子健康、农业、金融、汽⻋等领域有广泛的应用前景。5G NTN与地面通信的差异主要体现在高时延、广覆盖和卫星的运动等方面,这使得其在传输时延、多普勒频移、…

Ae:蒙版跟踪(含脸部跟踪)

蒙版跟踪,就是通过记录画面上蒙版区域的变化,生成蒙版路径 Mask Path的关键帧。 常用于完成合成中的遮挡关系,或者局部添加动态效果,以及实现人物的脸部特效。 蒙版跟踪 要使用蒙版跟踪器,需要先创建并选中蒙版&#x…

设计模式之~备忘录模式

备忘录(Memento): 备忘录模式(Memento Pattern)又称之为快照模式(Snapshop Pattern)或者令牌模式(Token Pattern)。 在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态…

【数据库优化-count()】count()统计行数

目录 1 count(*)为什么性能差? 2 优化count(*)性能 2.1 增加redis缓存 2.2 多线程执行 2.3 减少join的表 3 count的各种用法性能对比 数据库:Mysql8、存储引擎是Innodb。 通常情况下,分页接口一般会查询两次数据库,第一次是…

软考A计划-试题模拟含答案解析-卷十七

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例 👉关于作者 专注于Android/Unity和各种游戏开发技巧,以及各种资源分享&am…

用ChatGPT写一个数据采集程序

入门教程、案例源码、学习资料、读者群 请访问:python666.cn 大家好,欢迎来到 Crossin的编程教室 ! 上次我们讨论了ChatGPT在辅助编程学习上的一些用法: 如何用ChatGPT学Python 既然ChatGPT可以理解并生成代码,那么自然…

多线程 —— 线程控制

目录 线程控制1 线程创建2 线程等待3 线程终止4 线程分离 pthread_t id && LWP 线程控制 1 线程创建 功能:创建一个新的线程 原型 int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void*), void *arg); 参数…