图解max{X,Y}和min{X,Y}并求相关概率
对max{X,Y}或min{X,Y}进行分解再求解
P
(
m
a
x
{
X
,
Y
}
≥
c
)
=
P
[
(
X
≥
c
)
∪
(
Y
≥
c
)
]
P
(
m
a
x
{
X
,
Y
}
≤
c
)
=
P
[
(
X
≤
c
)
∩
(
Y
≤
c
)
]
P
(
m
i
n
{
X
,
Y
}
≥
c
)
=
P
[
(
X
≥
c
)
∩
(
Y
≥
c
)
]
P
(
m
i
n
{
X
,
Y
}
≤
c
)
=
P
[
(
X
≤
c
)
∪
(
Y
≤
c
)
]
P(max\{X,Y\}\geq c)=P[(X\geq c)\cup(Y\geq c)]\\ P(max\{X,Y\}\leq c)=P[(X\leq c)\cap(Y\leq c)]\\ P(min\{X,Y\}\geq c)=P[(X\geq c)\cap(Y\geq c)]\\ P(min\{X,Y\}\leq c)=P[(X\leq c)\cup(Y\leq c)]\\
P(max{X,Y}≥c)=P[(X≥c)∪(Y≥c)]P(max{X,Y}≤c)=P[(X≤c)∩(Y≤c)]P(min{X,Y}≥c)=P[(X≥c)∩(Y≥c)]P(min{X,Y}≤c)=P[(X≤c)∪(Y≤c)]
先来图解一下上述结论
P
(
m
a
x
{
X
,
Y
}
≥
c
)
=
P
[
(
X
≥
c
)
∪
(
Y
≥
c
)
]
P(max\{X,Y\}\geq c)=P[(X\geq c)\cup(Y\geq c)]
P(max{X,Y}≥c)=P[(X≥c)∪(Y≥c)]
P
(
m
a
x
{
X
,
Y
}
≤
c
)
=
P
[
(
X
≤
c
)
∩
(
Y
≤
c
)
]
P(max\{X,Y\}\leq c)=P[(X\leq c)\cap(Y\leq c)]
P(max{X,Y}≤c)=P[(X≤c)∩(Y≤c)]
P
(
m
i
n
{
X
,
Y
}
≥
c
)
=
P
[
(
X
≥
c
)
∩
(
Y
≥
c
)
]
P(min\{X,Y\}\geq c)=P[(X\geq c)\cap(Y\geq c)]
P(min{X,Y}≥c)=P[(X≥c)∩(Y≥c)]
P ( m i n { X , Y } ≤ c ) = P [ ( X ≤ c ) ∪ ( Y ≤ c ) ] P(min\{X,Y\}\leq c)=P[(X\leq c)\cup(Y\leq c)] P(min{X,Y}≤c)=P[(X≤c)∪(Y≤c)]
要注意区别
m
a
x
(
X
,
Y
)
≤
c
max(X,Y)\leq c
max(X,Y)≤c 和
m
i
n
(
X
,
Y
)
≤
c
min(X,Y)\leq c
min(X,Y)≤c 的示意图
不知道各位读者注意到了没有,在画
X
=
c
X=c
X=c 和
Y
=
c
Y=c
Y=c 时左右两个图是有区别的,这是由于上图左侧图像中
Y
=
X
Y=X
Y=X的上半部分是
Y
Y
Y 下半部分是
X
X
X 所以在画
X
=
c
X=c
X=c 时虚线只划到取
X
X
X 的部分,在画
Y
=
c
Y=c
Y=c 时虚线只画到取
Y
Y
Y 的部分,上图右侧图像同理如此。
例:2006年数学一